![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcvat | Structured version Visualization version GIF version |
Description: If a subspace covers another, it equals the other joined with some atom. This is a consequence of relative atomicity. (cvati 29225 analog.) (Contributed by NM, 11-Jan-2015.) |
Ref | Expression |
---|---|
lcvat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lcvat.p | ⊢ ⊕ = (LSSum‘𝑊) |
lcvat.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
icvat.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
lcvat.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lcvat.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
lcvat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lcvat.l | ⊢ (𝜑 → 𝑇𝐶𝑈) |
Ref | Expression |
---|---|
lcvat | ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 (𝑇 ⊕ 𝑞) = 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcvat.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
2 | lcvat.p | . . 3 ⊢ ⊕ = (LSSum‘𝑊) | |
3 | lcvat.a | . . 3 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
4 | lcvat.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
5 | lcvat.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
6 | lcvat.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
7 | icvat.c | . . . 4 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
8 | lcvat.l | . . . 4 ⊢ (𝜑 → 𝑇𝐶𝑈) | |
9 | 1, 7, 4, 5, 6, 8 | lcvpss 34311 | . . 3 ⊢ (𝜑 → 𝑇 ⊊ 𝑈) |
10 | 1, 2, 3, 4, 5, 6, 9 | lrelat 34301 | . 2 ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) |
11 | 4 | 3ad2ant1 1082 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → 𝑊 ∈ LMod) |
12 | 5 | 3ad2ant1 1082 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → 𝑇 ∈ 𝑆) |
13 | 6 | 3ad2ant1 1082 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → 𝑈 ∈ 𝑆) |
14 | simp2 1062 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → 𝑞 ∈ 𝐴) | |
15 | 1, 3, 11, 14 | lsatlssel 34284 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → 𝑞 ∈ 𝑆) |
16 | 1, 2 | lsmcl 19083 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑞 ∈ 𝑆) → (𝑇 ⊕ 𝑞) ∈ 𝑆) |
17 | 11, 12, 15, 16 | syl3anc 1326 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → (𝑇 ⊕ 𝑞) ∈ 𝑆) |
18 | 8 | 3ad2ant1 1082 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → 𝑇𝐶𝑈) |
19 | simp3l 1089 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → 𝑇 ⊊ (𝑇 ⊕ 𝑞)) | |
20 | simp3r 1090 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → (𝑇 ⊕ 𝑞) ⊆ 𝑈) | |
21 | 1, 7, 11, 12, 13, 17, 18, 19, 20 | lcvnbtwn2 34314 | . . . 4 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → (𝑇 ⊕ 𝑞) = 𝑈) |
22 | 21 | 3exp 1264 | . . 3 ⊢ (𝜑 → (𝑞 ∈ 𝐴 → ((𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈) → (𝑇 ⊕ 𝑞) = 𝑈))) |
23 | 22 | reximdvai 3015 | . 2 ⊢ (𝜑 → (∃𝑞 ∈ 𝐴 (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈) → ∃𝑞 ∈ 𝐴 (𝑇 ⊕ 𝑞) = 𝑈)) |
24 | 10, 23 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 (𝑇 ⊕ 𝑞) = 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 ⊆ wss 3574 ⊊ wpss 3575 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 LSSumclsm 18049 LModclmod 18863 LSubSpclss 18932 LSAtomsclsa 34261 ⋖L clcv 34305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-minusg 17426 df-sbg 17427 df-subg 17591 df-cntz 17750 df-lsm 18051 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-lmod 18865 df-lss 18933 df-lsp 18972 df-lsatoms 34263 df-lcv 34306 |
This theorem is referenced by: islshpcv 34340 |
Copyright terms: Public domain | W3C validator |