MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leordtvallem2 Structured version   Visualization version   GIF version

Theorem leordtvallem2 21015
Description: Lemma for leordtval 21017. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
leordtval.1 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
leordtval.2 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
Assertion
Ref Expression
leordtvallem2 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem leordtvallem2
StepHypRef Expression
1 leordtval.2 . 2 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
2 icossxr 12258 . . . . . 6 (-∞[,)𝑥) ⊆ ℝ*
3 sseqin2 3817 . . . . . 6 ((-∞[,)𝑥) ⊆ ℝ* ↔ (ℝ* ∩ (-∞[,)𝑥)) = (-∞[,)𝑥))
42, 3mpbi 220 . . . . 5 (ℝ* ∩ (-∞[,)𝑥)) = (-∞[,)𝑥)
5 mnfxr 10096 . . . . . . . 8 -∞ ∈ ℝ*
6 simpl 473 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*)
7 elico1 12218 . . . . . . . 8 ((-∞ ∈ ℝ*𝑥 ∈ ℝ*) → (𝑦 ∈ (-∞[,)𝑥) ↔ (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦𝑦 < 𝑥)))
85, 6, 7sylancr 695 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ (-∞[,)𝑥) ↔ (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦𝑦 < 𝑥)))
9 simpr 477 . . . . . . . . . 10 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
10 mnfle 11969 . . . . . . . . . 10 (𝑦 ∈ ℝ* → -∞ ≤ 𝑦)
119, 10jccir 562 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦))
1211biantrurd 529 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 < 𝑥 ↔ ((𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦) ∧ 𝑦 < 𝑥)))
13 df-3an 1039 . . . . . . . 8 ((𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦𝑦 < 𝑥) ↔ ((𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦) ∧ 𝑦 < 𝑥))
1412, 13syl6bbr 278 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 < 𝑥 ↔ (𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦𝑦 < 𝑥)))
15 xrltnle 10105 . . . . . . . 8 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑦 < 𝑥 ↔ ¬ 𝑥𝑦))
1615ancoms 469 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 < 𝑥 ↔ ¬ 𝑥𝑦))
178, 14, 163bitr2d 296 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ (-∞[,)𝑥) ↔ ¬ 𝑥𝑦))
1817rabbi2dva 3821 . . . . 5 (𝑥 ∈ ℝ* → (ℝ* ∩ (-∞[,)𝑥)) = {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
194, 18syl5eqr 2670 . . . 4 (𝑥 ∈ ℝ* → (-∞[,)𝑥) = {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
2019mpteq2ia 4740 . . 3 (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
2120rneqi 5352 . 2 ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
221, 21eqtri 2644 1 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916  cin 3573  wss 3574   class class class wbr 4653  cmpt 4729  ran crn 5115  (class class class)co 6650  +∞cpnf 10071  -∞cmnf 10072  *cxr 10073   < clt 10074  cle 10075  (,]cioc 12176  [,)cico 12177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ico 12181
This theorem is referenced by:  leordtval2  21016  leordtval  21017
  Copyright terms: Public domain W3C validator