MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leordtval2 Structured version   Visualization version   GIF version

Theorem leordtval2 21016
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
leordtval.1 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
leordtval.2 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
Assertion
Ref Expression
leordtval2 (ordTop‘ ≤ ) = (topGen‘(fi‘(𝐴𝐵)))

Proof of Theorem leordtval2
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 letsr 17227 . . 3 ≤ ∈ TosetRel
2 ledm 17224 . . . 4 * = dom ≤
3 leordtval.1 . . . . 5 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
43leordtvallem1 21014 . . . 4 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
5 leordtval.2 . . . . 5 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
63, 5leordtvallem2 21015 . . . 4 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
72, 4, 6ordtval 20993 . . 3 ( ≤ ∈ TosetRel → (ordTop‘ ≤ ) = (topGen‘(fi‘({ℝ*} ∪ (𝐴𝐵)))))
81, 7ax-mp 5 . 2 (ordTop‘ ≤ ) = (topGen‘(fi‘({ℝ*} ∪ (𝐴𝐵))))
9 snex 4908 . . . . 5 {ℝ*} ∈ V
10 xrex 11829 . . . . . . 7 * ∈ V
1110pwex 4848 . . . . . 6 𝒫 ℝ* ∈ V
12 eqid 2622 . . . . . . . . . 10 (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
13 iocssxr 12257 . . . . . . . . . . . 12 (𝑥(,]+∞) ⊆ ℝ*
1410elpw2 4828 . . . . . . . . . . . 12 ((𝑥(,]+∞) ∈ 𝒫 ℝ* ↔ (𝑥(,]+∞) ⊆ ℝ*)
1513, 14mpbir 221 . . . . . . . . . . 11 (𝑥(,]+∞) ∈ 𝒫 ℝ*
1615a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℝ* → (𝑥(,]+∞) ∈ 𝒫 ℝ*)
1712, 16fmpti 6383 . . . . . . . . 9 (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)):ℝ*⟶𝒫 ℝ*
18 frn 6053 . . . . . . . . 9 ((𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)):ℝ*⟶𝒫 ℝ* → ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ⊆ 𝒫 ℝ*)
1917, 18ax-mp 5 . . . . . . . 8 ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ⊆ 𝒫 ℝ*
203, 19eqsstri 3635 . . . . . . 7 𝐴 ⊆ 𝒫 ℝ*
21 eqid 2622 . . . . . . . . . 10 (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
22 icossxr 12258 . . . . . . . . . . . 12 (-∞[,)𝑥) ⊆ ℝ*
2310elpw2 4828 . . . . . . . . . . . 12 ((-∞[,)𝑥) ∈ 𝒫 ℝ* ↔ (-∞[,)𝑥) ⊆ ℝ*)
2422, 23mpbir 221 . . . . . . . . . . 11 (-∞[,)𝑥) ∈ 𝒫 ℝ*
2524a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℝ* → (-∞[,)𝑥) ∈ 𝒫 ℝ*)
2621, 25fmpti 6383 . . . . . . . . 9 (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)):ℝ*⟶𝒫 ℝ*
27 frn 6053 . . . . . . . . 9 ((𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)):ℝ*⟶𝒫 ℝ* → ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ⊆ 𝒫 ℝ*)
2826, 27ax-mp 5 . . . . . . . 8 ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ⊆ 𝒫 ℝ*
295, 28eqsstri 3635 . . . . . . 7 𝐵 ⊆ 𝒫 ℝ*
3020, 29unssi 3788 . . . . . 6 (𝐴𝐵) ⊆ 𝒫 ℝ*
3111, 30ssexi 4803 . . . . 5 (𝐴𝐵) ∈ V
329, 31unex 6956 . . . 4 ({ℝ*} ∪ (𝐴𝐵)) ∈ V
33 ssun2 3777 . . . 4 (𝐴𝐵) ⊆ ({ℝ*} ∪ (𝐴𝐵))
34 fiss 8330 . . . 4 ((({ℝ*} ∪ (𝐴𝐵)) ∈ V ∧ (𝐴𝐵) ⊆ ({ℝ*} ∪ (𝐴𝐵))) → (fi‘(𝐴𝐵)) ⊆ (fi‘({ℝ*} ∪ (𝐴𝐵))))
3532, 33, 34mp2an 708 . . 3 (fi‘(𝐴𝐵)) ⊆ (fi‘({ℝ*} ∪ (𝐴𝐵)))
36 fvex 6201 . . . . 5 (topGen‘(fi‘(𝐴𝐵))) ∈ V
37 ovex 6678 . . . . . . . . . 10 (0(,]+∞) ∈ V
38 ovex 6678 . . . . . . . . . 10 (-∞[,)1) ∈ V
3937, 38unipr 4449 . . . . . . . . 9 {(0(,]+∞), (-∞[,)1)} = ((0(,]+∞) ∪ (-∞[,)1))
40 iocssxr 12257 . . . . . . . . . . 11 (0(,]+∞) ⊆ ℝ*
41 icossxr 12258 . . . . . . . . . . 11 (-∞[,)1) ⊆ ℝ*
4240, 41unssi 3788 . . . . . . . . . 10 ((0(,]+∞) ∪ (-∞[,)1)) ⊆ ℝ*
43 mnfxr 10096 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
44 0xr 10086 . . . . . . . . . . . . 13 0 ∈ ℝ*
45 pnfxr 10092 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
46 mnflt0 11959 . . . . . . . . . . . . . 14 -∞ < 0
47 0lepnf 11966 . . . . . . . . . . . . . 14 0 ≤ +∞
48 df-icc 12182 . . . . . . . . . . . . . . 15 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
49 df-ioc 12180 . . . . . . . . . . . . . . 15 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
50 xrltnle 10105 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ*𝑤 ∈ ℝ*) → (0 < 𝑤 ↔ ¬ 𝑤 ≤ 0))
51 xrletr 11989 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ* ∧ 0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 ≤ 0 ∧ 0 ≤ +∞) → 𝑤 ≤ +∞))
52 xrlttr 11973 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < 0 ∧ 0 < 𝑤) → -∞ < 𝑤))
53 xrltle 11982 . . . . . . . . . . . . . . . . 17 ((-∞ ∈ ℝ*𝑤 ∈ ℝ*) → (-∞ < 𝑤 → -∞ ≤ 𝑤))
54533adant2 1080 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*𝑤 ∈ ℝ*) → (-∞ < 𝑤 → -∞ ≤ 𝑤))
5552, 54syld 47 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < 0 ∧ 0 < 𝑤) → -∞ ≤ 𝑤))
5648, 49, 50, 48, 51, 55ixxun 12191 . . . . . . . . . . . . . 14 (((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 0 ∧ 0 ≤ +∞)) → ((-∞[,]0) ∪ (0(,]+∞)) = (-∞[,]+∞))
5746, 47, 56mpanr12 721 . . . . . . . . . . . . 13 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞[,]0) ∪ (0(,]+∞)) = (-∞[,]+∞))
5843, 44, 45, 57mp3an 1424 . . . . . . . . . . . 12 ((-∞[,]0) ∪ (0(,]+∞)) = (-∞[,]+∞)
59 1re 10039 . . . . . . . . . . . . . . 15 1 ∈ ℝ
6059rexri 10097 . . . . . . . . . . . . . 14 1 ∈ ℝ*
61 0lt1 10550 . . . . . . . . . . . . . 14 0 < 1
62 df-ico 12181 . . . . . . . . . . . . . . 15 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
63 xrlelttr 11987 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ* ∧ 0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑤 ≤ 0 ∧ 0 < 1) → 𝑤 < 1))
6462, 48, 63ixxss2 12194 . . . . . . . . . . . . . 14 ((1 ∈ ℝ* ∧ 0 < 1) → (-∞[,]0) ⊆ (-∞[,)1))
6560, 61, 64mp2an 708 . . . . . . . . . . . . 13 (-∞[,]0) ⊆ (-∞[,)1)
66 unss1 3782 . . . . . . . . . . . . 13 ((-∞[,]0) ⊆ (-∞[,)1) → ((-∞[,]0) ∪ (0(,]+∞)) ⊆ ((-∞[,)1) ∪ (0(,]+∞)))
6765, 66ax-mp 5 . . . . . . . . . . . 12 ((-∞[,]0) ∪ (0(,]+∞)) ⊆ ((-∞[,)1) ∪ (0(,]+∞))
6858, 67eqsstr3i 3636 . . . . . . . . . . 11 (-∞[,]+∞) ⊆ ((-∞[,)1) ∪ (0(,]+∞))
69 iccmax 12249 . . . . . . . . . . 11 (-∞[,]+∞) = ℝ*
70 uncom 3757 . . . . . . . . . . 11 ((-∞[,)1) ∪ (0(,]+∞)) = ((0(,]+∞) ∪ (-∞[,)1))
7168, 69, 703sstr3i 3643 . . . . . . . . . 10 * ⊆ ((0(,]+∞) ∪ (-∞[,)1))
7242, 71eqssi 3619 . . . . . . . . 9 ((0(,]+∞) ∪ (-∞[,)1)) = ℝ*
7339, 72eqtri 2644 . . . . . . . 8 {(0(,]+∞), (-∞[,)1)} = ℝ*
74 fvex 6201 . . . . . . . . 9 (fi‘(𝐴𝐵)) ∈ V
75 ssun1 3776 . . . . . . . . . . . 12 𝐴 ⊆ (𝐴𝐵)
76 eqid 2622 . . . . . . . . . . . . . . 15 (0(,]+∞) = (0(,]+∞)
77 oveq1 6657 . . . . . . . . . . . . . . . . 17 (𝑥 = 0 → (𝑥(,]+∞) = (0(,]+∞))
7877eqeq2d 2632 . . . . . . . . . . . . . . . 16 (𝑥 = 0 → ((0(,]+∞) = (𝑥(,]+∞) ↔ (0(,]+∞) = (0(,]+∞)))
7978rspcev 3309 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ* ∧ (0(,]+∞) = (0(,]+∞)) → ∃𝑥 ∈ ℝ* (0(,]+∞) = (𝑥(,]+∞))
8044, 76, 79mp2an 708 . . . . . . . . . . . . . 14 𝑥 ∈ ℝ* (0(,]+∞) = (𝑥(,]+∞)
81 ovex 6678 . . . . . . . . . . . . . . 15 (𝑥(,]+∞) ∈ V
8212, 81elrnmpti 5376 . . . . . . . . . . . . . 14 ((0(,]+∞) ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ↔ ∃𝑥 ∈ ℝ* (0(,]+∞) = (𝑥(,]+∞))
8380, 82mpbir 221 . . . . . . . . . . . . 13 (0(,]+∞) ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
8483, 3eleqtrri 2700 . . . . . . . . . . . 12 (0(,]+∞) ∈ 𝐴
8575, 84sselii 3600 . . . . . . . . . . 11 (0(,]+∞) ∈ (𝐴𝐵)
86 ssun2 3777 . . . . . . . . . . . 12 𝐵 ⊆ (𝐴𝐵)
87 eqid 2622 . . . . . . . . . . . . . . 15 (-∞[,)1) = (-∞[,)1)
88 oveq2 6658 . . . . . . . . . . . . . . . . 17 (𝑥 = 1 → (-∞[,)𝑥) = (-∞[,)1))
8988eqeq2d 2632 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → ((-∞[,)1) = (-∞[,)𝑥) ↔ (-∞[,)1) = (-∞[,)1)))
9089rspcev 3309 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ* ∧ (-∞[,)1) = (-∞[,)1)) → ∃𝑥 ∈ ℝ* (-∞[,)1) = (-∞[,)𝑥))
9160, 87, 90mp2an 708 . . . . . . . . . . . . . 14 𝑥 ∈ ℝ* (-∞[,)1) = (-∞[,)𝑥)
92 ovex 6678 . . . . . . . . . . . . . . 15 (-∞[,)𝑥) ∈ V
9321, 92elrnmpti 5376 . . . . . . . . . . . . . 14 ((-∞[,)1) ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ↔ ∃𝑥 ∈ ℝ* (-∞[,)1) = (-∞[,)𝑥))
9491, 93mpbir 221 . . . . . . . . . . . . 13 (-∞[,)1) ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
9594, 5eleqtrri 2700 . . . . . . . . . . . 12 (-∞[,)1) ∈ 𝐵
9686, 95sselii 3600 . . . . . . . . . . 11 (-∞[,)1) ∈ (𝐴𝐵)
97 prssi 4353 . . . . . . . . . . 11 (((0(,]+∞) ∈ (𝐴𝐵) ∧ (-∞[,)1) ∈ (𝐴𝐵)) → {(0(,]+∞), (-∞[,)1)} ⊆ (𝐴𝐵))
9885, 96, 97mp2an 708 . . . . . . . . . 10 {(0(,]+∞), (-∞[,)1)} ⊆ (𝐴𝐵)
99 ssfii 8325 . . . . . . . . . . 11 ((𝐴𝐵) ∈ V → (𝐴𝐵) ⊆ (fi‘(𝐴𝐵)))
10031, 99ax-mp 5 . . . . . . . . . 10 (𝐴𝐵) ⊆ (fi‘(𝐴𝐵))
10198, 100sstri 3612 . . . . . . . . 9 {(0(,]+∞), (-∞[,)1)} ⊆ (fi‘(𝐴𝐵))
102 eltg3i 20765 . . . . . . . . 9 (((fi‘(𝐴𝐵)) ∈ V ∧ {(0(,]+∞), (-∞[,)1)} ⊆ (fi‘(𝐴𝐵))) → {(0(,]+∞), (-∞[,)1)} ∈ (topGen‘(fi‘(𝐴𝐵))))
10374, 101, 102mp2an 708 . . . . . . . 8 {(0(,]+∞), (-∞[,)1)} ∈ (topGen‘(fi‘(𝐴𝐵)))
10473, 103eqeltrri 2698 . . . . . . 7 * ∈ (topGen‘(fi‘(𝐴𝐵)))
105 snssi 4339 . . . . . . 7 (ℝ* ∈ (topGen‘(fi‘(𝐴𝐵))) → {ℝ*} ⊆ (topGen‘(fi‘(𝐴𝐵))))
106104, 105ax-mp 5 . . . . . 6 {ℝ*} ⊆ (topGen‘(fi‘(𝐴𝐵)))
107 bastg 20770 . . . . . . . 8 ((fi‘(𝐴𝐵)) ∈ V → (fi‘(𝐴𝐵)) ⊆ (topGen‘(fi‘(𝐴𝐵))))
10874, 107ax-mp 5 . . . . . . 7 (fi‘(𝐴𝐵)) ⊆ (topGen‘(fi‘(𝐴𝐵)))
109100, 108sstri 3612 . . . . . 6 (𝐴𝐵) ⊆ (topGen‘(fi‘(𝐴𝐵)))
110106, 109unssi 3788 . . . . 5 ({ℝ*} ∪ (𝐴𝐵)) ⊆ (topGen‘(fi‘(𝐴𝐵)))
111 fiss 8330 . . . . 5 (((topGen‘(fi‘(𝐴𝐵))) ∈ V ∧ ({ℝ*} ∪ (𝐴𝐵)) ⊆ (topGen‘(fi‘(𝐴𝐵)))) → (fi‘({ℝ*} ∪ (𝐴𝐵))) ⊆ (fi‘(topGen‘(fi‘(𝐴𝐵)))))
11236, 110, 111mp2an 708 . . . 4 (fi‘({ℝ*} ∪ (𝐴𝐵))) ⊆ (fi‘(topGen‘(fi‘(𝐴𝐵))))
113 fibas 20781 . . . . 5 (fi‘(𝐴𝐵)) ∈ TopBases
114 tgcl 20773 . . . . 5 ((fi‘(𝐴𝐵)) ∈ TopBases → (topGen‘(fi‘(𝐴𝐵))) ∈ Top)
115 fitop 20705 . . . . 5 ((topGen‘(fi‘(𝐴𝐵))) ∈ Top → (fi‘(topGen‘(fi‘(𝐴𝐵)))) = (topGen‘(fi‘(𝐴𝐵))))
116113, 114, 115mp2b 10 . . . 4 (fi‘(topGen‘(fi‘(𝐴𝐵)))) = (topGen‘(fi‘(𝐴𝐵)))
117112, 116sseqtri 3637 . . 3 (fi‘({ℝ*} ∪ (𝐴𝐵))) ⊆ (topGen‘(fi‘(𝐴𝐵)))
118 2basgen 20794 . . 3 (((fi‘(𝐴𝐵)) ⊆ (fi‘({ℝ*} ∪ (𝐴𝐵))) ∧ (fi‘({ℝ*} ∪ (𝐴𝐵))) ⊆ (topGen‘(fi‘(𝐴𝐵)))) → (topGen‘(fi‘(𝐴𝐵))) = (topGen‘(fi‘({ℝ*} ∪ (𝐴𝐵)))))
11935, 117, 118mp2an 708 . 2 (topGen‘(fi‘(𝐴𝐵))) = (topGen‘(fi‘({ℝ*} ∪ (𝐴𝐵))))
1208, 119eqtr4i 2647 1 (ordTop‘ ≤ ) = (topGen‘(fi‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  Vcvv 3200  cun 3572  wss 3574  𝒫 cpw 4158  {csn 4177  {cpr 4179   cuni 4436   class class class wbr 4653  cmpt 4729  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  ficfi 8316  0cc0 9936  1c1 9937  +∞cpnf 10071  -∞cmnf 10072  *cxr 10073   < clt 10074  cle 10075  (,]cioc 12176  [,)cico 12177  [,]cicc 12178  topGenctg 16098  ordTopcordt 16159   TosetRel ctsr 17199  Topctop 20698  TopBasesctb 20749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-ioc 12180  df-ico 12181  df-icc 12182  df-topgen 16104  df-ordt 16161  df-ps 17200  df-tsr 17201  df-top 20699  df-bases 20750
This theorem is referenced by:  leordtval  21017  lecldbas  21023
  Copyright terms: Public domain W3C validator