| Step | Hyp | Ref
| Expression |
| 1 | | letsr 17227 |
. . 3
⊢ ≤
∈ TosetRel |
| 2 | | ledm 17224 |
. . . 4
⊢
ℝ* = dom ≤ |
| 3 | | leordtval.1 |
. . . . 5
⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) |
| 4 | 3 | leordtvallem1 21014 |
. . . 4
⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ*
∣ ¬ 𝑦 ≤ 𝑥}) |
| 5 | | leordtval.2 |
. . . . 5
⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦
(-∞[,)𝑥)) |
| 6 | 3, 5 | leordtvallem2 21015 |
. . . 4
⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ*
∣ ¬ 𝑥 ≤ 𝑦}) |
| 7 | 2, 4, 6 | ordtval 20993 |
. . 3
⊢ ( ≤
∈ TosetRel → (ordTop‘ ≤ ) =
(topGen‘(fi‘({ℝ*} ∪ (𝐴 ∪ 𝐵))))) |
| 8 | 1, 7 | ax-mp 5 |
. 2
⊢
(ordTop‘ ≤ ) = (topGen‘(fi‘({ℝ*}
∪ (𝐴 ∪ 𝐵)))) |
| 9 | | snex 4908 |
. . . . 5
⊢
{ℝ*} ∈ V |
| 10 | | xrex 11829 |
. . . . . . 7
⊢
ℝ* ∈ V |
| 11 | 10 | pwex 4848 |
. . . . . 6
⊢ 𝒫
ℝ* ∈ V |
| 12 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ*
↦ (𝑥(,]+∞)) =
(𝑥 ∈
ℝ* ↦ (𝑥(,]+∞)) |
| 13 | | iocssxr 12257 |
. . . . . . . . . . . 12
⊢ (𝑥(,]+∞) ⊆
ℝ* |
| 14 | 10 | elpw2 4828 |
. . . . . . . . . . . 12
⊢ ((𝑥(,]+∞) ∈ 𝒫
ℝ* ↔ (𝑥(,]+∞) ⊆
ℝ*) |
| 15 | 13, 14 | mpbir 221 |
. . . . . . . . . . 11
⊢ (𝑥(,]+∞) ∈ 𝒫
ℝ* |
| 16 | 15 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ*
→ (𝑥(,]+∞)
∈ 𝒫 ℝ*) |
| 17 | 12, 16 | fmpti 6383 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ*
↦ (𝑥(,]+∞)):ℝ*⟶𝒫
ℝ* |
| 18 | | frn 6053 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ*
↦ (𝑥(,]+∞)):ℝ*⟶𝒫
ℝ* → ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ⊆ 𝒫
ℝ*) |
| 19 | 17, 18 | ax-mp 5 |
. . . . . . . 8
⊢ ran
(𝑥 ∈
ℝ* ↦ (𝑥(,]+∞)) ⊆ 𝒫
ℝ* |
| 20 | 3, 19 | eqsstri 3635 |
. . . . . . 7
⊢ 𝐴 ⊆ 𝒫
ℝ* |
| 21 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ*
↦ (-∞[,)𝑥)) =
(𝑥 ∈
ℝ* ↦ (-∞[,)𝑥)) |
| 22 | | icossxr 12258 |
. . . . . . . . . . . 12
⊢
(-∞[,)𝑥)
⊆ ℝ* |
| 23 | 10 | elpw2 4828 |
. . . . . . . . . . . 12
⊢
((-∞[,)𝑥)
∈ 𝒫 ℝ* ↔ (-∞[,)𝑥) ⊆
ℝ*) |
| 24 | 22, 23 | mpbir 221 |
. . . . . . . . . . 11
⊢
(-∞[,)𝑥)
∈ 𝒫 ℝ* |
| 25 | 24 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ*
→ (-∞[,)𝑥)
∈ 𝒫 ℝ*) |
| 26 | 21, 25 | fmpti 6383 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ*
↦ (-∞[,)𝑥)):ℝ*⟶𝒫
ℝ* |
| 27 | | frn 6053 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ*
↦ (-∞[,)𝑥)):ℝ*⟶𝒫
ℝ* → ran (𝑥 ∈ ℝ* ↦
(-∞[,)𝑥)) ⊆
𝒫 ℝ*) |
| 28 | 26, 27 | ax-mp 5 |
. . . . . . . 8
⊢ ran
(𝑥 ∈
ℝ* ↦ (-∞[,)𝑥)) ⊆ 𝒫
ℝ* |
| 29 | 5, 28 | eqsstri 3635 |
. . . . . . 7
⊢ 𝐵 ⊆ 𝒫
ℝ* |
| 30 | 20, 29 | unssi 3788 |
. . . . . 6
⊢ (𝐴 ∪ 𝐵) ⊆ 𝒫
ℝ* |
| 31 | 11, 30 | ssexi 4803 |
. . . . 5
⊢ (𝐴 ∪ 𝐵) ∈ V |
| 32 | 9, 31 | unex 6956 |
. . . 4
⊢
({ℝ*} ∪ (𝐴 ∪ 𝐵)) ∈ V |
| 33 | | ssun2 3777 |
. . . 4
⊢ (𝐴 ∪ 𝐵) ⊆ ({ℝ*} ∪
(𝐴 ∪ 𝐵)) |
| 34 | | fiss 8330 |
. . . 4
⊢
((({ℝ*} ∪ (𝐴 ∪ 𝐵)) ∈ V ∧ (𝐴 ∪ 𝐵) ⊆ ({ℝ*} ∪
(𝐴 ∪ 𝐵))) → (fi‘(𝐴 ∪ 𝐵)) ⊆ (fi‘({ℝ*}
∪ (𝐴 ∪ 𝐵)))) |
| 35 | 32, 33, 34 | mp2an 708 |
. . 3
⊢
(fi‘(𝐴 ∪
𝐵)) ⊆
(fi‘({ℝ*} ∪ (𝐴 ∪ 𝐵))) |
| 36 | | fvex 6201 |
. . . . 5
⊢
(topGen‘(fi‘(𝐴 ∪ 𝐵))) ∈ V |
| 37 | | ovex 6678 |
. . . . . . . . . 10
⊢
(0(,]+∞) ∈ V |
| 38 | | ovex 6678 |
. . . . . . . . . 10
⊢
(-∞[,)1) ∈ V |
| 39 | 37, 38 | unipr 4449 |
. . . . . . . . 9
⊢ ∪ {(0(,]+∞), (-∞[,)1)} = ((0(,]+∞) ∪
(-∞[,)1)) |
| 40 | | iocssxr 12257 |
. . . . . . . . . . 11
⊢
(0(,]+∞) ⊆ ℝ* |
| 41 | | icossxr 12258 |
. . . . . . . . . . 11
⊢
(-∞[,)1) ⊆ ℝ* |
| 42 | 40, 41 | unssi 3788 |
. . . . . . . . . 10
⊢
((0(,]+∞) ∪ (-∞[,)1)) ⊆
ℝ* |
| 43 | | mnfxr 10096 |
. . . . . . . . . . . . 13
⊢ -∞
∈ ℝ* |
| 44 | | 0xr 10086 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℝ* |
| 45 | | pnfxr 10092 |
. . . . . . . . . . . . 13
⊢ +∞
∈ ℝ* |
| 46 | | mnflt0 11959 |
. . . . . . . . . . . . . 14
⊢ -∞
< 0 |
| 47 | | 0lepnf 11966 |
. . . . . . . . . . . . . 14
⊢ 0 ≤
+∞ |
| 48 | | df-icc 12182 |
. . . . . . . . . . . . . . 15
⊢ [,] =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| 49 | | df-ioc 12180 |
. . . . . . . . . . . . . . 15
⊢ (,] =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| 50 | | xrltnle 10105 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (0 <
𝑤 ↔ ¬ 𝑤 ≤ 0)) |
| 51 | | xrletr 11989 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 ∈ ℝ*
∧ 0 ∈ ℝ* ∧ +∞ ∈ ℝ*)
→ ((𝑤 ≤ 0 ∧ 0
≤ +∞) → 𝑤
≤ +∞)) |
| 52 | | xrlttr 11973 |
. . . . . . . . . . . . . . . 16
⊢
((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*
∧ 𝑤 ∈
ℝ*) → ((-∞ < 0 ∧ 0 < 𝑤) → -∞ < 𝑤)) |
| 53 | | xrltle 11982 |
. . . . . . . . . . . . . . . . 17
⊢
((-∞ ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (-∞
< 𝑤 → -∞ ≤
𝑤)) |
| 54 | 53 | 3adant2 1080 |
. . . . . . . . . . . . . . . 16
⊢
((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*
∧ 𝑤 ∈
ℝ*) → (-∞ < 𝑤 → -∞ ≤ 𝑤)) |
| 55 | 52, 54 | syld 47 |
. . . . . . . . . . . . . . 15
⊢
((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*
∧ 𝑤 ∈
ℝ*) → ((-∞ < 0 ∧ 0 < 𝑤) → -∞ ≤ 𝑤)) |
| 56 | 48, 49, 50, 48, 51, 55 | ixxun 12191 |
. . . . . . . . . . . . . 14
⊢
(((-∞ ∈ ℝ* ∧ 0 ∈
ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞
< 0 ∧ 0 ≤ +∞)) → ((-∞[,]0) ∪ (0(,]+∞)) =
(-∞[,]+∞)) |
| 57 | 46, 47, 56 | mpanr12 721 |
. . . . . . . . . . . . 13
⊢
((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*
∧ +∞ ∈ ℝ*) → ((-∞[,]0) ∪
(0(,]+∞)) = (-∞[,]+∞)) |
| 58 | 43, 44, 45, 57 | mp3an 1424 |
. . . . . . . . . . . 12
⊢
((-∞[,]0) ∪ (0(,]+∞)) =
(-∞[,]+∞) |
| 59 | | 1re 10039 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℝ |
| 60 | 59 | rexri 10097 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℝ* |
| 61 | | 0lt1 10550 |
. . . . . . . . . . . . . 14
⊢ 0 <
1 |
| 62 | | df-ico 12181 |
. . . . . . . . . . . . . . 15
⊢ [,) =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 63 | | xrlelttr 11987 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 ∈ ℝ*
∧ 0 ∈ ℝ* ∧ 1 ∈ ℝ*) →
((𝑤 ≤ 0 ∧ 0 < 1)
→ 𝑤 <
1)) |
| 64 | 62, 48, 63 | ixxss2 12194 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ ℝ* ∧ 0 < 1) → (-∞[,]0) ⊆
(-∞[,)1)) |
| 65 | 60, 61, 64 | mp2an 708 |
. . . . . . . . . . . . 13
⊢
(-∞[,]0) ⊆ (-∞[,)1) |
| 66 | | unss1 3782 |
. . . . . . . . . . . . 13
⊢
((-∞[,]0) ⊆ (-∞[,)1) → ((-∞[,]0) ∪
(0(,]+∞)) ⊆ ((-∞[,)1) ∪ (0(,]+∞))) |
| 67 | 65, 66 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
((-∞[,]0) ∪ (0(,]+∞)) ⊆ ((-∞[,)1) ∪
(0(,]+∞)) |
| 68 | 58, 67 | eqsstr3i 3636 |
. . . . . . . . . . 11
⊢
(-∞[,]+∞) ⊆ ((-∞[,)1) ∪
(0(,]+∞)) |
| 69 | | iccmax 12249 |
. . . . . . . . . . 11
⊢
(-∞[,]+∞) = ℝ* |
| 70 | | uncom 3757 |
. . . . . . . . . . 11
⊢
((-∞[,)1) ∪ (0(,]+∞)) = ((0(,]+∞) ∪
(-∞[,)1)) |
| 71 | 68, 69, 70 | 3sstr3i 3643 |
. . . . . . . . . 10
⊢
ℝ* ⊆ ((0(,]+∞) ∪
(-∞[,)1)) |
| 72 | 42, 71 | eqssi 3619 |
. . . . . . . . 9
⊢
((0(,]+∞) ∪ (-∞[,)1)) =
ℝ* |
| 73 | 39, 72 | eqtri 2644 |
. . . . . . . 8
⊢ ∪ {(0(,]+∞), (-∞[,)1)} =
ℝ* |
| 74 | | fvex 6201 |
. . . . . . . . 9
⊢
(fi‘(𝐴 ∪
𝐵)) ∈
V |
| 75 | | ssun1 3776 |
. . . . . . . . . . . 12
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
| 76 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢
(0(,]+∞) = (0(,]+∞) |
| 77 | | oveq1 6657 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 0 → (𝑥(,]+∞) =
(0(,]+∞)) |
| 78 | 77 | eqeq2d 2632 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 0 → ((0(,]+∞) =
(𝑥(,]+∞) ↔
(0(,]+∞) = (0(,]+∞))) |
| 79 | 78 | rspcev 3309 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ ℝ* ∧ (0(,]+∞) = (0(,]+∞)) →
∃𝑥 ∈
ℝ* (0(,]+∞) = (𝑥(,]+∞)) |
| 80 | 44, 76, 79 | mp2an 708 |
. . . . . . . . . . . . . 14
⊢
∃𝑥 ∈
ℝ* (0(,]+∞) = (𝑥(,]+∞) |
| 81 | | ovex 6678 |
. . . . . . . . . . . . . . 15
⊢ (𝑥(,]+∞) ∈
V |
| 82 | 12, 81 | elrnmpti 5376 |
. . . . . . . . . . . . . 14
⊢
((0(,]+∞) ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ↔
∃𝑥 ∈
ℝ* (0(,]+∞) = (𝑥(,]+∞)) |
| 83 | 80, 82 | mpbir 221 |
. . . . . . . . . . . . 13
⊢
(0(,]+∞) ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) |
| 84 | 83, 3 | eleqtrri 2700 |
. . . . . . . . . . . 12
⊢
(0(,]+∞) ∈ 𝐴 |
| 85 | 75, 84 | sselii 3600 |
. . . . . . . . . . 11
⊢
(0(,]+∞) ∈ (𝐴 ∪ 𝐵) |
| 86 | | ssun2 3777 |
. . . . . . . . . . . 12
⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) |
| 87 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢
(-∞[,)1) = (-∞[,)1) |
| 88 | | oveq2 6658 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 1 → (-∞[,)𝑥) =
(-∞[,)1)) |
| 89 | 88 | eqeq2d 2632 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 1 → ((-∞[,)1) =
(-∞[,)𝑥) ↔
(-∞[,)1) = (-∞[,)1))) |
| 90 | 89 | rspcev 3309 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ ℝ* ∧ (-∞[,)1) = (-∞[,)1)) →
∃𝑥 ∈
ℝ* (-∞[,)1) = (-∞[,)𝑥)) |
| 91 | 60, 87, 90 | mp2an 708 |
. . . . . . . . . . . . . 14
⊢
∃𝑥 ∈
ℝ* (-∞[,)1) = (-∞[,)𝑥) |
| 92 | | ovex 6678 |
. . . . . . . . . . . . . . 15
⊢
(-∞[,)𝑥)
∈ V |
| 93 | 21, 92 | elrnmpti 5376 |
. . . . . . . . . . . . . 14
⊢
((-∞[,)1) ∈ ran (𝑥 ∈ ℝ* ↦
(-∞[,)𝑥)) ↔
∃𝑥 ∈
ℝ* (-∞[,)1) = (-∞[,)𝑥)) |
| 94 | 91, 93 | mpbir 221 |
. . . . . . . . . . . . 13
⊢
(-∞[,)1) ∈ ran (𝑥 ∈ ℝ* ↦
(-∞[,)𝑥)) |
| 95 | 94, 5 | eleqtrri 2700 |
. . . . . . . . . . . 12
⊢
(-∞[,)1) ∈ 𝐵 |
| 96 | 86, 95 | sselii 3600 |
. . . . . . . . . . 11
⊢
(-∞[,)1) ∈ (𝐴 ∪ 𝐵) |
| 97 | | prssi 4353 |
. . . . . . . . . . 11
⊢
(((0(,]+∞) ∈ (𝐴 ∪ 𝐵) ∧ (-∞[,)1) ∈ (𝐴 ∪ 𝐵)) → {(0(,]+∞), (-∞[,)1)}
⊆ (𝐴 ∪ 𝐵)) |
| 98 | 85, 96, 97 | mp2an 708 |
. . . . . . . . . 10
⊢
{(0(,]+∞), (-∞[,)1)} ⊆ (𝐴 ∪ 𝐵) |
| 99 | | ssfii 8325 |
. . . . . . . . . . 11
⊢ ((𝐴 ∪ 𝐵) ∈ V → (𝐴 ∪ 𝐵) ⊆ (fi‘(𝐴 ∪ 𝐵))) |
| 100 | 31, 99 | ax-mp 5 |
. . . . . . . . . 10
⊢ (𝐴 ∪ 𝐵) ⊆ (fi‘(𝐴 ∪ 𝐵)) |
| 101 | 98, 100 | sstri 3612 |
. . . . . . . . 9
⊢
{(0(,]+∞), (-∞[,)1)} ⊆ (fi‘(𝐴 ∪ 𝐵)) |
| 102 | | eltg3i 20765 |
. . . . . . . . 9
⊢
(((fi‘(𝐴 ∪
𝐵)) ∈ V ∧
{(0(,]+∞), (-∞[,)1)} ⊆ (fi‘(𝐴 ∪ 𝐵))) → ∪
{(0(,]+∞), (-∞[,)1)} ∈ (topGen‘(fi‘(𝐴 ∪ 𝐵)))) |
| 103 | 74, 101, 102 | mp2an 708 |
. . . . . . . 8
⊢ ∪ {(0(,]+∞), (-∞[,)1)} ∈
(topGen‘(fi‘(𝐴
∪ 𝐵))) |
| 104 | 73, 103 | eqeltrri 2698 |
. . . . . . 7
⊢
ℝ* ∈ (topGen‘(fi‘(𝐴 ∪ 𝐵))) |
| 105 | | snssi 4339 |
. . . . . . 7
⊢
(ℝ* ∈ (topGen‘(fi‘(𝐴 ∪ 𝐵))) → {ℝ*} ⊆
(topGen‘(fi‘(𝐴
∪ 𝐵)))) |
| 106 | 104, 105 | ax-mp 5 |
. . . . . 6
⊢
{ℝ*} ⊆ (topGen‘(fi‘(𝐴 ∪ 𝐵))) |
| 107 | | bastg 20770 |
. . . . . . . 8
⊢
((fi‘(𝐴 ∪
𝐵)) ∈ V →
(fi‘(𝐴 ∪ 𝐵)) ⊆
(topGen‘(fi‘(𝐴
∪ 𝐵)))) |
| 108 | 74, 107 | ax-mp 5 |
. . . . . . 7
⊢
(fi‘(𝐴 ∪
𝐵)) ⊆
(topGen‘(fi‘(𝐴
∪ 𝐵))) |
| 109 | 100, 108 | sstri 3612 |
. . . . . 6
⊢ (𝐴 ∪ 𝐵) ⊆ (topGen‘(fi‘(𝐴 ∪ 𝐵))) |
| 110 | 106, 109 | unssi 3788 |
. . . . 5
⊢
({ℝ*} ∪ (𝐴 ∪ 𝐵)) ⊆ (topGen‘(fi‘(𝐴 ∪ 𝐵))) |
| 111 | | fiss 8330 |
. . . . 5
⊢
(((topGen‘(fi‘(𝐴 ∪ 𝐵))) ∈ V ∧ ({ℝ*}
∪ (𝐴 ∪ 𝐵)) ⊆
(topGen‘(fi‘(𝐴
∪ 𝐵)))) →
(fi‘({ℝ*} ∪ (𝐴 ∪ 𝐵))) ⊆
(fi‘(topGen‘(fi‘(𝐴 ∪ 𝐵))))) |
| 112 | 36, 110, 111 | mp2an 708 |
. . . 4
⊢
(fi‘({ℝ*} ∪ (𝐴 ∪ 𝐵))) ⊆
(fi‘(topGen‘(fi‘(𝐴 ∪ 𝐵)))) |
| 113 | | fibas 20781 |
. . . . 5
⊢
(fi‘(𝐴 ∪
𝐵)) ∈
TopBases |
| 114 | | tgcl 20773 |
. . . . 5
⊢
((fi‘(𝐴 ∪
𝐵)) ∈ TopBases →
(topGen‘(fi‘(𝐴
∪ 𝐵))) ∈
Top) |
| 115 | | fitop 20705 |
. . . . 5
⊢
((topGen‘(fi‘(𝐴 ∪ 𝐵))) ∈ Top →
(fi‘(topGen‘(fi‘(𝐴 ∪ 𝐵)))) = (topGen‘(fi‘(𝐴 ∪ 𝐵)))) |
| 116 | 113, 114,
115 | mp2b 10 |
. . . 4
⊢
(fi‘(topGen‘(fi‘(𝐴 ∪ 𝐵)))) = (topGen‘(fi‘(𝐴 ∪ 𝐵))) |
| 117 | 112, 116 | sseqtri 3637 |
. . 3
⊢
(fi‘({ℝ*} ∪ (𝐴 ∪ 𝐵))) ⊆ (topGen‘(fi‘(𝐴 ∪ 𝐵))) |
| 118 | | 2basgen 20794 |
. . 3
⊢
(((fi‘(𝐴 ∪
𝐵)) ⊆
(fi‘({ℝ*} ∪ (𝐴 ∪ 𝐵))) ∧ (fi‘({ℝ*}
∪ (𝐴 ∪ 𝐵))) ⊆
(topGen‘(fi‘(𝐴
∪ 𝐵)))) →
(topGen‘(fi‘(𝐴
∪ 𝐵))) =
(topGen‘(fi‘({ℝ*} ∪ (𝐴 ∪ 𝐵))))) |
| 119 | 35, 117, 118 | mp2an 708 |
. 2
⊢
(topGen‘(fi‘(𝐴 ∪ 𝐵))) =
(topGen‘(fi‘({ℝ*} ∪ (𝐴 ∪ 𝐵)))) |
| 120 | 8, 119 | eqtr4i 2647 |
1
⊢
(ordTop‘ ≤ ) = (topGen‘(fi‘(𝐴 ∪ 𝐵))) |