![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > leordtval | Structured version Visualization version GIF version |
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
leordtval.1 | ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) |
leordtval.2 | ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) |
leordtval.3 | ⊢ 𝐶 = ran (,) |
Ref | Expression |
---|---|
leordtval | ⊢ (ordTop‘ ≤ ) = (topGen‘((𝐴 ∪ 𝐵) ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leordtval.1 | . . 3 ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) | |
2 | leordtval.2 | . . 3 ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) | |
3 | 1, 2 | leordtval2 21016 | . 2 ⊢ (ordTop‘ ≤ ) = (topGen‘(fi‘(𝐴 ∪ 𝐵))) |
4 | letsr 17227 | . . . 4 ⊢ ≤ ∈ TosetRel | |
5 | ledm 17224 | . . . . 5 ⊢ ℝ* = dom ≤ | |
6 | 1 | leordtvallem1 21014 | . . . . 5 ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
7 | 1, 2 | leordtvallem2 21015 | . . . . 5 ⊢ 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦}) |
8 | leordtval.3 | . . . . . 6 ⊢ 𝐶 = ran (,) | |
9 | df-ioo 12179 | . . . . . . . 8 ⊢ (,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦 ∧ 𝑦 < 𝑏)}) | |
10 | xrltnle 10105 | . . . . . . . . . . . 12 ⊢ ((𝑎 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑎 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑎)) | |
11 | 10 | adantlr 751 | . . . . . . . . . . 11 ⊢ (((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑎 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑎)) |
12 | xrltnle 10105 | . . . . . . . . . . . . 13 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏 ≤ 𝑦)) | |
13 | 12 | ancoms 469 | . . . . . . . . . . . 12 ⊢ ((𝑏 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏 ≤ 𝑦)) |
14 | 13 | adantll 750 | . . . . . . . . . . 11 ⊢ (((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑦 < 𝑏 ↔ ¬ 𝑏 ≤ 𝑦)) |
15 | 11, 14 | anbi12d 747 | . . . . . . . . . 10 ⊢ (((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → ((𝑎 < 𝑦 ∧ 𝑦 < 𝑏) ↔ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦))) |
16 | 15 | rabbidva 3188 | . . . . . . . . 9 ⊢ ((𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*) → {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦 ∧ 𝑦 < 𝑏)} = {𝑦 ∈ ℝ* ∣ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦)}) |
17 | 16 | mpt2eq3ia 6720 | . . . . . . . 8 ⊢ (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (𝑎 < 𝑦 ∧ 𝑦 < 𝑏)}) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦)}) |
18 | 9, 17 | eqtri 2644 | . . . . . . 7 ⊢ (,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦)}) |
19 | 18 | rneqi 5352 | . . . . . 6 ⊢ ran (,) = ran (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦)}) |
20 | 8, 19 | eqtri 2644 | . . . . 5 ⊢ 𝐶 = ran (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ (¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦)}) |
21 | 5, 6, 7, 20 | ordtbas2 20995 | . . . 4 ⊢ ( ≤ ∈ TosetRel → (fi‘(𝐴 ∪ 𝐵)) = ((𝐴 ∪ 𝐵) ∪ 𝐶)) |
22 | 4, 21 | ax-mp 5 | . . 3 ⊢ (fi‘(𝐴 ∪ 𝐵)) = ((𝐴 ∪ 𝐵) ∪ 𝐶) |
23 | 22 | fveq2i 6194 | . 2 ⊢ (topGen‘(fi‘(𝐴 ∪ 𝐵))) = (topGen‘((𝐴 ∪ 𝐵) ∪ 𝐶)) |
24 | 3, 23 | eqtri 2644 | 1 ⊢ (ordTop‘ ≤ ) = (topGen‘((𝐴 ∪ 𝐵) ∪ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {crab 2916 ∪ cun 3572 class class class wbr 4653 ↦ cmpt 4729 ran crn 5115 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 ficfi 8316 +∞cpnf 10071 -∞cmnf 10072 ℝ*cxr 10073 < clt 10074 ≤ cle 10075 (,)cioo 12175 (,]cioc 12176 [,)cico 12177 topGenctg 16098 ordTopcordt 16159 TosetRel ctsr 17199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fi 8317 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-ioo 12179 df-ioc 12180 df-ico 12181 df-icc 12182 df-topgen 16104 df-ordt 16161 df-ps 17200 df-tsr 17201 df-top 20699 df-bases 20750 |
This theorem is referenced by: iocpnfordt 21019 icomnfordt 21020 iooordt 21021 pnfnei 21024 mnfnei 21025 xrtgioo 22609 |
Copyright terms: Public domain | W3C validator |