Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsup0 Structured version   Visualization version   GIF version

Theorem limsup0 39926
Description: The superior limit of the empty set (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
limsup0 (lim sup‘∅) = -∞

Proof of Theorem limsup0
StepHypRef Expression
1 0ex 4790 . . 3 ∅ ∈ V
2 eqid 2622 . . . 4 (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
32limsupval 14205 . . 3 (∅ ∈ V → (lim sup‘∅) = inf(ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
41, 3ax-mp 5 . 2 (lim sup‘∅) = inf(ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )
5 0ima 5482 . . . . . . . . . 10 (∅ “ (𝑥[,)+∞)) = ∅
65ineq1i 3810 . . . . . . . . 9 ((∅ “ (𝑥[,)+∞)) ∩ ℝ*) = (∅ ∩ ℝ*)
7 0in 3969 . . . . . . . . 9 (∅ ∩ ℝ*) = ∅
86, 7eqtri 2644 . . . . . . . 8 ((∅ “ (𝑥[,)+∞)) ∩ ℝ*) = ∅
98supeq1i 8353 . . . . . . 7 sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(∅, ℝ*, < )
10 xrsup0 12153 . . . . . . 7 sup(∅, ℝ*, < ) = -∞
119, 10eqtri 2644 . . . . . 6 sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ) = -∞
1211mpteq2i 4741 . . . . 5 (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑥 ∈ ℝ ↦ -∞)
13 mnfxr 10096 . . . . . 6 -∞ ∈ ℝ*
1413a1i 11 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ) → -∞ ∈ ℝ*)
15 ren0 39626 . . . . . 6 ℝ ≠ ∅
1615a1i 11 . . . . 5 (⊤ → ℝ ≠ ∅)
1712, 14, 16rnmptc 39353 . . . 4 (⊤ → ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = {-∞})
1817trud 1493 . . 3 ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = {-∞}
1918infeq1i 8384 . 2 inf(ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf({-∞}, ℝ*, < )
20 xrltso 11974 . . 3 < Or ℝ*
21 infsn 8410 . . 3 (( < Or ℝ* ∧ -∞ ∈ ℝ*) → inf({-∞}, ℝ*, < ) = -∞)
2220, 13, 21mp2an 708 . 2 inf({-∞}, ℝ*, < ) = -∞
234, 19, 223eqtri 2648 1 (lim sup‘∅) = -∞
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wtru 1484  wcel 1990  wne 2794  Vcvv 3200  cin 3573  c0 3915  {csn 4177  cmpt 4729   Or wor 5034  ran crn 5115  cima 5117  cfv 5888  (class class class)co 6650  supcsup 8346  infcinf 8347  cr 9935  +∞cpnf 10071  -∞cmnf 10072  *cxr 10073   < clt 10074  [,)cico 12177  lim supclsp 14201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-limsup 14202
This theorem is referenced by:  climlimsupcex  40001  liminf0  40025  liminflelimsupcex  40029
  Copyright terms: Public domain W3C validator