![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatcvat | Structured version Visualization version GIF version |
Description: A nonzero subspace less than the sum of two atoms is an atom. (atcvati 29245 analog.) (Contributed by NM, 10-Jan-2015.) |
Ref | Expression |
---|---|
lsatcvat.o | ⊢ 0 = (0g‘𝑊) |
lsatcvat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lsatcvat.p | ⊢ ⊕ = (LSSum‘𝑊) |
lsatcvat.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lsatcvat.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lsatcvat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lsatcvat.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
lsatcvat.r | ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
lsatcvat.n | ⊢ (𝜑 → 𝑈 ≠ { 0 }) |
lsatcvat.l | ⊢ (𝜑 → 𝑈 ⊊ (𝑄 ⊕ 𝑅)) |
Ref | Expression |
---|---|
lsatcvat | ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatcvat.o | . . 3 ⊢ 0 = (0g‘𝑊) | |
2 | lsatcvat.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | lsatcvat.p | . . 3 ⊢ ⊕ = (LSSum‘𝑊) | |
4 | lsatcvat.a | . . 3 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
5 | lsatcvat.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
6 | 5 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑊 ∈ LVec) |
7 | lsatcvat.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
8 | 7 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑈 ∈ 𝑆) |
9 | lsatcvat.q | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
10 | 9 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑄 ∈ 𝐴) |
11 | lsatcvat.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝐴) | |
12 | 11 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑅 ∈ 𝐴) |
13 | lsatcvat.n | . . . 4 ⊢ (𝜑 → 𝑈 ≠ { 0 }) | |
14 | 13 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑈 ≠ { 0 }) |
15 | lsatcvat.l | . . . 4 ⊢ (𝜑 → 𝑈 ⊊ (𝑄 ⊕ 𝑅)) | |
16 | 15 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑈 ⊊ (𝑄 ⊕ 𝑅)) |
17 | simpr 477 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → ¬ 𝑄 ⊆ 𝑈) | |
18 | 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 17 | lsatcvatlem 34336 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑈 ∈ 𝐴) |
19 | 5 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑊 ∈ LVec) |
20 | 7 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑈 ∈ 𝑆) |
21 | 11 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑅 ∈ 𝐴) |
22 | 9 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑄 ∈ 𝐴) |
23 | 13 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑈 ≠ { 0 }) |
24 | lveclmod 19106 | . . . . . . . . 9 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
25 | 5, 24 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LMod) |
26 | lmodabl 18910 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
27 | 25, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Abel) |
28 | 2 | lsssssubg 18958 | . . . . . . . . 9 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
29 | 25, 28 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
30 | 2, 4, 25, 9 | lsatlssel 34284 | . . . . . . . 8 ⊢ (𝜑 → 𝑄 ∈ 𝑆) |
31 | 29, 30 | sseldd 3604 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ (SubGrp‘𝑊)) |
32 | 2, 4, 25, 11 | lsatlssel 34284 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
33 | 29, 32 | sseldd 3604 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ (SubGrp‘𝑊)) |
34 | 3 | lsmcom 18261 | . . . . . . 7 ⊢ ((𝑊 ∈ Abel ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → (𝑄 ⊕ 𝑅) = (𝑅 ⊕ 𝑄)) |
35 | 27, 31, 33, 34 | syl3anc 1326 | . . . . . 6 ⊢ (𝜑 → (𝑄 ⊕ 𝑅) = (𝑅 ⊕ 𝑄)) |
36 | 35 | psseq2d 3700 | . . . . 5 ⊢ (𝜑 → (𝑈 ⊊ (𝑄 ⊕ 𝑅) ↔ 𝑈 ⊊ (𝑅 ⊕ 𝑄))) |
37 | 15, 36 | mpbid 222 | . . . 4 ⊢ (𝜑 → 𝑈 ⊊ (𝑅 ⊕ 𝑄)) |
38 | 37 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑈 ⊊ (𝑅 ⊕ 𝑄)) |
39 | simpr 477 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → ¬ 𝑅 ⊆ 𝑈) | |
40 | 1, 2, 3, 4, 19, 20, 21, 22, 23, 38, 39 | lsatcvatlem 34336 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑈 ∈ 𝐴) |
41 | 29, 7 | sseldd 3604 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
42 | 3 | lsmlub 18078 | . . . . . . 7 ⊢ ((𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈) ↔ (𝑄 ⊕ 𝑅) ⊆ 𝑈)) |
43 | 31, 33, 41, 42 | syl3anc 1326 | . . . . . 6 ⊢ (𝜑 → ((𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈) ↔ (𝑄 ⊕ 𝑅) ⊆ 𝑈)) |
44 | ssnpss 3710 | . . . . . 6 ⊢ ((𝑄 ⊕ 𝑅) ⊆ 𝑈 → ¬ 𝑈 ⊊ (𝑄 ⊕ 𝑅)) | |
45 | 43, 44 | syl6bi 243 | . . . . 5 ⊢ (𝜑 → ((𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈) → ¬ 𝑈 ⊊ (𝑄 ⊕ 𝑅))) |
46 | 45 | con2d 129 | . . . 4 ⊢ (𝜑 → (𝑈 ⊊ (𝑄 ⊕ 𝑅) → ¬ (𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈))) |
47 | ianor 509 | . . . 4 ⊢ (¬ (𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈) ↔ (¬ 𝑄 ⊆ 𝑈 ∨ ¬ 𝑅 ⊆ 𝑈)) | |
48 | 46, 47 | syl6ib 241 | . . 3 ⊢ (𝜑 → (𝑈 ⊊ (𝑄 ⊕ 𝑅) → (¬ 𝑄 ⊆ 𝑈 ∨ ¬ 𝑅 ⊆ 𝑈))) |
49 | 15, 48 | mpd 15 | . 2 ⊢ (𝜑 → (¬ 𝑄 ⊆ 𝑈 ∨ ¬ 𝑅 ⊆ 𝑈)) |
50 | 18, 40, 49 | mpjaodan 827 | 1 ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 383 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ⊆ wss 3574 ⊊ wpss 3575 {csn 4177 ‘cfv 5888 (class class class)co 6650 0gc0g 16100 SubGrpcsubg 17588 LSSumclsm 18049 Abelcabl 18194 LModclmod 18863 LSubSpclss 18932 LVecclvec 19102 LSAtomsclsa 34261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-0g 16102 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-minusg 17426 df-sbg 17427 df-subg 17591 df-cntz 17750 df-oppg 17776 df-lsm 18051 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-drng 18749 df-lmod 18865 df-lss 18933 df-lsp 18972 df-lvec 19103 df-lsatoms 34263 df-lcv 34306 |
This theorem is referenced by: lsatcvat2 34338 |
Copyright terms: Public domain | W3C validator |