MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspprabs Structured version   Visualization version   GIF version

Theorem lspprabs 19095
Description: Absorption of vector sum into span of pair. (Contributed by NM, 27-Apr-2015.)
Hypotheses
Ref Expression
lspprabs.v 𝑉 = (Base‘𝑊)
lspprabs.p + = (+g𝑊)
lspprabs.n 𝑁 = (LSpan‘𝑊)
lspprabs.w (𝜑𝑊 ∈ LMod)
lspprabs.x (𝜑𝑋𝑉)
lspprabs.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lspprabs (𝜑 → (𝑁‘{𝑋, (𝑋 + 𝑌)}) = (𝑁‘{𝑋, 𝑌}))

Proof of Theorem lspprabs
StepHypRef Expression
1 lspprabs.w . . . . . . 7 (𝜑𝑊 ∈ LMod)
2 eqid 2622 . . . . . . . 8 (LSubSp‘𝑊) = (LSubSp‘𝑊)
32lsssssubg 18958 . . . . . . 7 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
41, 3syl 17 . . . . . 6 (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
5 lspprabs.x . . . . . . 7 (𝜑𝑋𝑉)
6 lspprabs.v . . . . . . . 8 𝑉 = (Base‘𝑊)
7 lspprabs.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
86, 2, 7lspsncl 18977 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
91, 5, 8syl2anc 693 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
104, 9sseldd 3604 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
11 lspprabs.y . . . . . . 7 (𝜑𝑌𝑉)
126, 2, 7lspsncl 18977 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
131, 11, 12syl2anc 693 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
144, 13sseldd 3604 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
15 eqid 2622 . . . . . 6 (LSSum‘𝑊) = (LSSum‘𝑊)
1615lsmub1 18071 . . . . 5 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) → (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
1710, 14, 16syl2anc 693 . . . 4 (𝜑 → (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
182, 15lsmcl 19083 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑊))
191, 9, 13, 18syl3anc 1326 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑊))
206, 7lspsnid 18993 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
211, 5, 20syl2anc 693 . . . . . 6 (𝜑𝑋 ∈ (𝑁‘{𝑋}))
226, 7lspsnid 18993 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → 𝑌 ∈ (𝑁‘{𝑌}))
231, 11, 22syl2anc 693 . . . . . 6 (𝜑𝑌 ∈ (𝑁‘{𝑌}))
24 lspprabs.p . . . . . . 7 + = (+g𝑊)
2524, 15lsmelvali 18065 . . . . . 6 ((((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) ∧ (𝑋 ∈ (𝑁‘{𝑋}) ∧ 𝑌 ∈ (𝑁‘{𝑌}))) → (𝑋 + 𝑌) ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
2610, 14, 21, 23, 25syl22anc 1327 . . . . 5 (𝜑 → (𝑋 + 𝑌) ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
272, 7, 1, 19, 26lspsnel5a 18996 . . . 4 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
286, 24lmodvacl 18877 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
291, 5, 11, 28syl3anc 1326 . . . . . . 7 (𝜑 → (𝑋 + 𝑌) ∈ 𝑉)
306, 2, 7lspsncl 18977 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑌) ∈ 𝑉) → (𝑁‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑊))
311, 29, 30syl2anc 693 . . . . . 6 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑊))
324, 31sseldd 3604 . . . . 5 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ∈ (SubGrp‘𝑊))
334, 19sseldd 3604 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (SubGrp‘𝑊))
3415lsmlub 18078 . . . . 5 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{(𝑋 + 𝑌)}) ∈ (SubGrp‘𝑊) ∧ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (SubGrp‘𝑊)) → (((𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∧ (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))))
3510, 32, 33, 34syl3anc 1326 . . . 4 (𝜑 → (((𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∧ (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))))
3617, 27, 35mpbi2and 956 . . 3 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
3715lsmub1 18071 . . . . 5 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{(𝑋 + 𝑌)}) ∈ (SubGrp‘𝑊)) → (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
3810, 32, 37syl2anc 693 . . . 4 (𝜑 → (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
392, 15lsmcl 19083 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑊)) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ∈ (LSubSp‘𝑊))
401, 9, 31, 39syl3anc 1326 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ∈ (LSubSp‘𝑊))
41 eqid 2622 . . . . . . 7 (-g𝑊) = (-g𝑊)
426, 7lspsnid 18993 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑌) ∈ 𝑉) → (𝑋 + 𝑌) ∈ (𝑁‘{(𝑋 + 𝑌)}))
431, 29, 42syl2anc 693 . . . . . . 7 (𝜑 → (𝑋 + 𝑌) ∈ (𝑁‘{(𝑋 + 𝑌)}))
4441, 15, 32, 10, 43, 21lsmelvalmi 18067 . . . . . 6 (𝜑 → ((𝑋 + 𝑌)(-g𝑊)𝑋) ∈ ((𝑁‘{(𝑋 + 𝑌)})(LSSum‘𝑊)(𝑁‘{𝑋})))
45 lmodabl 18910 . . . . . . . 8 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
461, 45syl 17 . . . . . . 7 (𝜑𝑊 ∈ Abel)
476, 24, 41ablpncan2 18221 . . . . . . 7 ((𝑊 ∈ Abel ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑌)(-g𝑊)𝑋) = 𝑌)
4846, 5, 11, 47syl3anc 1326 . . . . . 6 (𝜑 → ((𝑋 + 𝑌)(-g𝑊)𝑋) = 𝑌)
4915lsmcom 18261 . . . . . . 7 ((𝑊 ∈ Abel ∧ (𝑁‘{(𝑋 + 𝑌)}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) → ((𝑁‘{(𝑋 + 𝑌)})(LSSum‘𝑊)(𝑁‘{𝑋})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
5046, 32, 10, 49syl3anc 1326 . . . . . 6 (𝜑 → ((𝑁‘{(𝑋 + 𝑌)})(LSSum‘𝑊)(𝑁‘{𝑋})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
5144, 48, 503eltr3d 2715 . . . . 5 (𝜑𝑌 ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
522, 7, 1, 40, 51lspsnel5a 18996 . . . 4 (𝜑 → (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
534, 40sseldd 3604 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ∈ (SubGrp‘𝑊))
5415lsmlub 18078 . . . . 5 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊) ∧ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ∈ (SubGrp‘𝑊)) → (((𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ∧ (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)}))) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)}))))
5510, 14, 53, 54syl3anc 1326 . . . 4 (𝜑 → (((𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ∧ (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)}))) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)}))))
5638, 52, 55mpbi2and 956 . . 3 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
5736, 56eqssd 3620 . 2 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
586, 7, 15, 1, 5, 29lsmpr 19089 . 2 (𝜑 → (𝑁‘{𝑋, (𝑋 + 𝑌)}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
596, 7, 15, 1, 5, 11lsmpr 19089 . 2 (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
6057, 58, 593eqtr4d 2666 1 (𝜑 → (𝑁‘{𝑋, (𝑋 + 𝑌)}) = (𝑁‘{𝑋, 𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wss 3574  {csn 4177  {cpr 4179  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  -gcsg 17424  SubGrpcsubg 17588  LSSumclsm 18049  Abelcabl 18194  LModclmod 18863  LSubSpclss 18932  LSpanclspn 18971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lsp 18972
This theorem is referenced by:  lspabs2  19120  lspindp4  19137  mapdindp4  37012
  Copyright terms: Public domain W3C validator