MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem4 Structured version   Visualization version   GIF version

Theorem pgpfac1lem4 18477
Description: Lemma for pgpfac1 18479. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac1.au (𝜑𝐴𝑈)
pgpfac1.w (𝜑𝑊 ∈ (SubGrp‘𝐺))
pgpfac1.i (𝜑 → (𝑆𝑊) = { 0 })
pgpfac1.ss (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
pgpfac1.2 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
pgpfac1.c (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
pgpfac1.mg · = (.g𝐺)
Assertion
Ref Expression
pgpfac1lem4 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
Distinct variable groups:   𝑡, 0   𝑤,𝑡,𝐴   𝑡, ,𝑤   𝑡,𝑃,𝑤   𝑡,𝐵   𝑡,𝐺,𝑤   𝑡,𝑈,𝑤   𝑡,𝐶,𝑤   𝑡,𝑆,𝑤   𝑡,𝑊,𝑤   𝜑,𝑡,𝑤   𝑡, · ,𝑤   𝑡,𝐾,𝑤
Allowed substitution hints:   𝐵(𝑤)   𝐸(𝑤,𝑡)   𝑂(𝑤,𝑡)   0 (𝑤)

Proof of Theorem pgpfac1lem4
Dummy variables 𝑘 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.k . . . . . . . 8 𝐾 = (mrCls‘(SubGrp‘𝐺))
2 pgpfac1.s . . . . . . . 8 𝑆 = (𝐾‘{𝐴})
3 pgpfac1.b . . . . . . . 8 𝐵 = (Base‘𝐺)
4 pgpfac1.o . . . . . . . 8 𝑂 = (od‘𝐺)
5 pgpfac1.e . . . . . . . 8 𝐸 = (gEx‘𝐺)
6 pgpfac1.z . . . . . . . 8 0 = (0g𝐺)
7 pgpfac1.l . . . . . . . 8 = (LSSum‘𝐺)
8 pgpfac1.p . . . . . . . 8 (𝜑𝑃 pGrp 𝐺)
9 pgpfac1.g . . . . . . . 8 (𝜑𝐺 ∈ Abel)
10 pgpfac1.n . . . . . . . 8 (𝜑𝐵 ∈ Fin)
11 pgpfac1.oe . . . . . . . 8 (𝜑 → (𝑂𝐴) = 𝐸)
12 pgpfac1.u . . . . . . . 8 (𝜑𝑈 ∈ (SubGrp‘𝐺))
13 pgpfac1.au . . . . . . . 8 (𝜑𝐴𝑈)
14 pgpfac1.w . . . . . . . 8 (𝜑𝑊 ∈ (SubGrp‘𝐺))
15 pgpfac1.i . . . . . . . 8 (𝜑 → (𝑆𝑊) = { 0 })
16 pgpfac1.ss . . . . . . . 8 (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
17 pgpfac1.2 . . . . . . . 8 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
18 pgpfac1.c . . . . . . . 8 (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
19 pgpfac1.mg . . . . . . . 8 · = (.g𝐺)
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19pgpfac1lem2 18474 . . . . . . 7 (𝜑 → (𝑃 · 𝐶) ∈ (𝑆 𝑊))
21 ablgrp 18198 . . . . . . . . . . . 12 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
229, 21syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ Grp)
233subgacs 17629 . . . . . . . . . . 11 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
24 acsmre 16313 . . . . . . . . . . 11 ((SubGrp‘𝐺) ∈ (ACS‘𝐵) → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
2522, 23, 243syl 18 . . . . . . . . . 10 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
263subgss 17595 . . . . . . . . . . . 12 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
2712, 26syl 17 . . . . . . . . . . 11 (𝜑𝑈𝐵)
2827, 13sseldd 3604 . . . . . . . . . 10 (𝜑𝐴𝐵)
291mrcsncl 16272 . . . . . . . . . 10 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐴𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
3025, 28, 29syl2anc 693 . . . . . . . . 9 (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
312, 30syl5eqel 2705 . . . . . . . 8 (𝜑𝑆 ∈ (SubGrp‘𝐺))
327lsmcom 18261 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → (𝑆 𝑊) = (𝑊 𝑆))
339, 31, 14, 32syl3anc 1326 . . . . . . 7 (𝜑 → (𝑆 𝑊) = (𝑊 𝑆))
3420, 33eleqtrd 2703 . . . . . 6 (𝜑 → (𝑃 · 𝐶) ∈ (𝑊 𝑆))
35 eqid 2622 . . . . . . 7 (-g𝐺) = (-g𝐺)
3635, 7, 14, 31lsmelvalm 18066 . . . . . 6 (𝜑 → ((𝑃 · 𝐶) ∈ (𝑊 𝑆) ↔ ∃𝑤𝑊𝑠𝑆 (𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠)))
3734, 36mpbid 222 . . . . 5 (𝜑 → ∃𝑤𝑊𝑠𝑆 (𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠))
38 eqid 2622 . . . . . . . . . . 11 (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴)) = (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))
393, 19, 38, 1cycsubg2 17631 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐴𝐵) → (𝐾‘{𝐴}) = ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴)))
4022, 28, 39syl2anc 693 . . . . . . . . 9 (𝜑 → (𝐾‘{𝐴}) = ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴)))
412, 40syl5eq 2668 . . . . . . . 8 (𝜑𝑆 = ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴)))
4241rexeqdv 3145 . . . . . . 7 (𝜑 → (∃𝑠𝑆 (𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ ∃𝑠 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))(𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠)))
43 ovex 6678 . . . . . . . . 9 (𝑘 · 𝐴) ∈ V
4443rgenw 2924 . . . . . . . 8 𝑘 ∈ ℤ (𝑘 · 𝐴) ∈ V
45 oveq2 6658 . . . . . . . . . 10 (𝑠 = (𝑘 · 𝐴) → (𝑤(-g𝐺)𝑠) = (𝑤(-g𝐺)(𝑘 · 𝐴)))
4645eqeq2d 2632 . . . . . . . . 9 (𝑠 = (𝑘 · 𝐴) → ((𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴))))
4738, 46rexrnmpt 6369 . . . . . . . 8 (∀𝑘 ∈ ℤ (𝑘 · 𝐴) ∈ V → (∃𝑠 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))(𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ ∃𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴))))
4844, 47ax-mp 5 . . . . . . 7 (∃𝑠 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))(𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ ∃𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)))
4942, 48syl6bb 276 . . . . . 6 (𝜑 → (∃𝑠𝑆 (𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ ∃𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴))))
5049rexbidv 3052 . . . . 5 (𝜑 → (∃𝑤𝑊𝑠𝑆 (𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ ∃𝑤𝑊𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴))))
5137, 50mpbid 222 . . . 4 (𝜑 → ∃𝑤𝑊𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)))
52 rexcom 3099 . . . 4 (∃𝑤𝑊𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ ∃𝑘 ∈ ℤ ∃𝑤𝑊 (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)))
5351, 52sylib 208 . . 3 (𝜑 → ∃𝑘 ∈ ℤ ∃𝑤𝑊 (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)))
5422ad2antrr 762 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → 𝐺 ∈ Grp)
553subgss 17595 . . . . . . . . . . 11 (𝑊 ∈ (SubGrp‘𝐺) → 𝑊𝐵)
5614, 55syl 17 . . . . . . . . . 10 (𝜑𝑊𝐵)
5756adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ ℤ) → 𝑊𝐵)
5857sselda 3603 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → 𝑤𝐵)
59 simplr 792 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → 𝑘 ∈ ℤ)
6028ad2antrr 762 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → 𝐴𝐵)
613, 19mulgcl 17559 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑘 ∈ ℤ ∧ 𝐴𝐵) → (𝑘 · 𝐴) ∈ 𝐵)
6254, 59, 60, 61syl3anc 1326 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → (𝑘 · 𝐴) ∈ 𝐵)
63 pgpprm 18008 . . . . . . . . . . 11 (𝑃 pGrp 𝐺𝑃 ∈ ℙ)
64 prmz 15389 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
658, 63, 643syl 18 . . . . . . . . . 10 (𝜑𝑃 ∈ ℤ)
6618eldifad 3586 . . . . . . . . . . 11 (𝜑𝐶𝑈)
6727, 66sseldd 3604 . . . . . . . . . 10 (𝜑𝐶𝐵)
683, 19mulgcl 17559 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℤ ∧ 𝐶𝐵) → (𝑃 · 𝐶) ∈ 𝐵)
6922, 65, 67, 68syl3anc 1326 . . . . . . . . 9 (𝜑 → (𝑃 · 𝐶) ∈ 𝐵)
7069ad2antrr 762 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → (𝑃 · 𝐶) ∈ 𝐵)
71 eqid 2622 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
723, 71, 35grpsubadd 17503 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑤𝐵 ∧ (𝑘 · 𝐴) ∈ 𝐵 ∧ (𝑃 · 𝐶) ∈ 𝐵)) → ((𝑤(-g𝐺)(𝑘 · 𝐴)) = (𝑃 · 𝐶) ↔ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) = 𝑤))
7354, 58, 62, 70, 72syl13anc 1328 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → ((𝑤(-g𝐺)(𝑘 · 𝐴)) = (𝑃 · 𝐶) ↔ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) = 𝑤))
74 eqcom 2629 . . . . . . 7 ((𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ (𝑤(-g𝐺)(𝑘 · 𝐴)) = (𝑃 · 𝐶))
75 eqcom 2629 . . . . . . 7 (𝑤 = ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ↔ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) = 𝑤)
7673, 74, 753bitr4g 303 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → ((𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ 𝑤 = ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴))))
7776rexbidva 3049 . . . . 5 ((𝜑𝑘 ∈ ℤ) → (∃𝑤𝑊 (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ ∃𝑤𝑊 𝑤 = ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴))))
78 risset 3062 . . . . 5 (((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊 ↔ ∃𝑤𝑊 𝑤 = ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)))
7977, 78syl6bbr 278 . . . 4 ((𝜑𝑘 ∈ ℤ) → (∃𝑤𝑊 (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊))
8079rexbidva 3049 . . 3 (𝜑 → (∃𝑘 ∈ ℤ ∃𝑤𝑊 (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ ∃𝑘 ∈ ℤ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊))
8153, 80mpbid 222 . 2 (𝜑 → ∃𝑘 ∈ ℤ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)
828adantr 481 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑃 pGrp 𝐺)
839adantr 481 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐺 ∈ Abel)
8410adantr 481 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐵 ∈ Fin)
8511adantr 481 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → (𝑂𝐴) = 𝐸)
8612adantr 481 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑈 ∈ (SubGrp‘𝐺))
8713adantr 481 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐴𝑈)
8814adantr 481 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑊 ∈ (SubGrp‘𝐺))
8915adantr 481 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → (𝑆𝑊) = { 0 })
9016adantr 481 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → (𝑆 𝑊) ⊆ 𝑈)
9117adantr 481 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
9218adantr 481 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
93 simprl 794 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑘 ∈ ℤ)
94 simprr 796 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)
95 eqid 2622 . . 3 (𝐶(+g𝐺)((𝑘 / 𝑃) · 𝐴)) = (𝐶(+g𝐺)((𝑘 / 𝑃) · 𝐴))
961, 2, 3, 4, 5, 6, 7, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 19, 93, 94, 95pgpfac1lem3 18476 . 2 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
9781, 96rexlimddv 3035 1 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  cdif 3571  cin 3573  wss 3574  wpss 3575  {csn 4177   class class class wbr 4653  cmpt 4729  ran crn 5115  cfv 5888  (class class class)co 6650  Fincfn 7955   / cdiv 10684  cz 11377  cprime 15385  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Moorecmre 16242  mrClscmrc 16243  ACScacs 16245  Grpcgrp 17422  -gcsg 17424  .gcmg 17540  SubGrpcsubg 17588  odcod 17944  gExcgex 17945   pGrp cpgp 17946  LSSumclsm 18049  Abelcabl 18194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-eqg 17593  df-ga 17723  df-cntz 17750  df-od 17948  df-gex 17949  df-pgp 17950  df-lsm 18051  df-cmn 18195  df-abl 18196
This theorem is referenced by:  pgpfac1lem5  18478
  Copyright terms: Public domain W3C validator