MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem4 Structured version   Visualization version   Unicode version

Theorem ltexprlem4 9861
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 6-Apr-1996.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  =  { x  |  E. y ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B ) }
Assertion
Ref Expression
ltexprlem4  |-  ( B  e.  P.  ->  (
x  e.  C  ->  E. z ( z  e.  C  /\  x  <Q  z ) ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, C, z
Allowed substitution hint:    C( y)

Proof of Theorem ltexprlem4
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 prnmax 9817 . . . . . . . . 9  |-  ( ( B  e.  P.  /\  ( y  +Q  x
)  e.  B )  ->  E. w  e.  B  ( y  +Q  x
)  <Q  w )
2 df-rex 2918 . . . . . . . . 9  |-  ( E. w  e.  B  ( y  +Q  x ) 
<Q  w  <->  E. w ( w  e.  B  /\  (
y  +Q  x ) 
<Q  w ) )
31, 2sylib 208 . . . . . . . 8  |-  ( ( B  e.  P.  /\  ( y  +Q  x
)  e.  B )  ->  E. w ( w  e.  B  /\  (
y  +Q  x ) 
<Q  w ) )
4 ltrelnq 9748 . . . . . . . . . . . . . . . . . . . 20  |-  <Q  C_  ( Q.  X.  Q. )
54brel 5168 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  +Q  x ) 
<Q  w  ->  ( ( y  +Q  x )  e.  Q.  /\  w  e.  Q. ) )
65simpld 475 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  +Q  x ) 
<Q  w  ->  ( y  +Q  x )  e. 
Q. )
7 addnqf 9770 . . . . . . . . . . . . . . . . . . . 20  |-  +Q  :
( Q.  X.  Q. )
--> Q.
87fdmi 6052 . . . . . . . . . . . . . . . . . . 19  |-  dom  +Q  =  ( Q.  X.  Q. )
9 0nnq 9746 . . . . . . . . . . . . . . . . . . 19  |-  -.  (/)  e.  Q.
108, 9ndmovrcl 6820 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  +Q  x )  e.  Q.  ->  (
y  e.  Q.  /\  x  e.  Q. )
)
116, 10syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( y  +Q  x ) 
<Q  w  ->  ( y  e.  Q.  /\  x  e.  Q. ) )
12 ltaddnq 9796 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  Q.  /\  x  e.  Q. )  ->  y  <Q  ( y  +Q  x ) )
13 ltsonq 9791 . . . . . . . . . . . . . . . . . . 19  |-  <Q  Or  Q.
1413, 4sotri 5523 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  <Q  ( y  +Q  x )  /\  (
y  +Q  x ) 
<Q  w )  ->  y  <Q  w )
1512, 14sylan 488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  Q.  /\  x  e.  Q. )  /\  ( y  +Q  x
)  <Q  w )  -> 
y  <Q  w )
1611, 15mpancom 703 . . . . . . . . . . . . . . . 16  |-  ( ( y  +Q  x ) 
<Q  w  ->  y  <Q  w )
174brel 5168 . . . . . . . . . . . . . . . . . 18  |-  ( y 
<Q  w  ->  ( y  e.  Q.  /\  w  e.  Q. ) )
1817simprd 479 . . . . . . . . . . . . . . . . 17  |-  ( y 
<Q  w  ->  w  e. 
Q. )
19 ltexnq 9797 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  Q.  ->  (
y  <Q  w  <->  E. z
( y  +Q  z
)  =  w ) )
2019biimpd 219 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  Q.  ->  (
y  <Q  w  ->  E. z
( y  +Q  z
)  =  w ) )
2118, 20mpcom 38 . . . . . . . . . . . . . . . 16  |-  ( y 
<Q  w  ->  E. z
( y  +Q  z
)  =  w )
2216, 21syl 17 . . . . . . . . . . . . . . 15  |-  ( ( y  +Q  x ) 
<Q  w  ->  E. z
( y  +Q  z
)  =  w )
23 eqcom 2629 . . . . . . . . . . . . . . . 16  |-  ( w  =  ( y  +Q  z )  <->  ( y  +Q  z )  =  w )
2423exbii 1774 . . . . . . . . . . . . . . 15  |-  ( E. z  w  =  ( y  +Q  z )  <->  E. z ( y  +Q  z )  =  w )
2522, 24sylibr 224 . . . . . . . . . . . . . 14  |-  ( ( y  +Q  x ) 
<Q  w  ->  E. z  w  =  ( y  +Q  z ) )
2625ancri 575 . . . . . . . . . . . . 13  |-  ( ( y  +Q  x ) 
<Q  w  ->  ( E. z  w  =  ( y  +Q  z )  /\  ( y  +Q  x )  <Q  w
) )
2726anim2i 593 . . . . . . . . . . . 12  |-  ( ( w  e.  B  /\  ( y  +Q  x
)  <Q  w )  -> 
( w  e.  B  /\  ( E. z  w  =  ( y  +Q  z )  /\  (
y  +Q  x ) 
<Q  w ) ) )
28 an12 838 . . . . . . . . . . . 12  |-  ( ( E. z  w  =  ( y  +Q  z
)  /\  ( w  e.  B  /\  (
y  +Q  x ) 
<Q  w ) )  <->  ( w  e.  B  /\  ( E. z  w  =  ( y  +Q  z
)  /\  ( y  +Q  x )  <Q  w
) ) )
2927, 28sylibr 224 . . . . . . . . . . 11  |-  ( ( w  e.  B  /\  ( y  +Q  x
)  <Q  w )  -> 
( E. z  w  =  ( y  +Q  z )  /\  (
w  e.  B  /\  ( y  +Q  x
)  <Q  w ) ) )
30 19.41v 1914 . . . . . . . . . . 11  |-  ( E. z ( w  =  ( y  +Q  z
)  /\  ( w  e.  B  /\  (
y  +Q  x ) 
<Q  w ) )  <->  ( E. z  w  =  (
y  +Q  z )  /\  ( w  e.  B  /\  ( y  +Q  x )  <Q  w ) ) )
3129, 30sylibr 224 . . . . . . . . . 10  |-  ( ( w  e.  B  /\  ( y  +Q  x
)  <Q  w )  ->  E. z ( w  =  ( y  +Q  z
)  /\  ( w  e.  B  /\  (
y  +Q  x ) 
<Q  w ) ) )
3231eximi 1762 . . . . . . . . 9  |-  ( E. w ( w  e.  B  /\  ( y  +Q  x )  <Q  w )  ->  E. w E. z ( w  =  ( y  +Q  z
)  /\  ( w  e.  B  /\  (
y  +Q  x ) 
<Q  w ) ) )
33 excom 2042 . . . . . . . . 9  |-  ( E. z E. w ( w  =  ( y  +Q  z )  /\  ( w  e.  B  /\  ( y  +Q  x
)  <Q  w ) )  <->  E. w E. z ( w  =  ( y  +Q  z )  /\  ( w  e.  B  /\  ( y  +Q  x
)  <Q  w ) ) )
3432, 33sylibr 224 . . . . . . . 8  |-  ( E. w ( w  e.  B  /\  ( y  +Q  x )  <Q  w )  ->  E. z E. w ( w  =  ( y  +Q  z
)  /\  ( w  e.  B  /\  (
y  +Q  x ) 
<Q  w ) ) )
35 ovex 6678 . . . . . . . . . . 11  |-  ( y  +Q  z )  e. 
_V
36 eleq1 2689 . . . . . . . . . . . 12  |-  ( w  =  ( y  +Q  z )  ->  (
w  e.  B  <->  ( y  +Q  z )  e.  B
) )
37 breq2 4657 . . . . . . . . . . . 12  |-  ( w  =  ( y  +Q  z )  ->  (
( y  +Q  x
)  <Q  w  <->  ( y  +Q  x )  <Q  (
y  +Q  z ) ) )
3836, 37anbi12d 747 . . . . . . . . . . 11  |-  ( w  =  ( y  +Q  z )  ->  (
( w  e.  B  /\  ( y  +Q  x
)  <Q  w )  <->  ( (
y  +Q  z )  e.  B  /\  (
y  +Q  x ) 
<Q  ( y  +Q  z
) ) ) )
3935, 38ceqsexv 3242 . . . . . . . . . 10  |-  ( E. w ( w  =  ( y  +Q  z
)  /\  ( w  e.  B  /\  (
y  +Q  x ) 
<Q  w ) )  <->  ( (
y  +Q  z )  e.  B  /\  (
y  +Q  x ) 
<Q  ( y  +Q  z
) ) )
40 ltanq 9793 . . . . . . . . . . . 12  |-  ( y  e.  Q.  ->  (
x  <Q  z  <->  ( y  +Q  x )  <Q  (
y  +Q  z ) ) )
418, 4, 9, 40ndmovordi 6825 . . . . . . . . . . 11  |-  ( ( y  +Q  x ) 
<Q  ( y  +Q  z
)  ->  x  <Q  z )
4241anim2i 593 . . . . . . . . . 10  |-  ( ( ( y  +Q  z
)  e.  B  /\  ( y  +Q  x
)  <Q  ( y  +Q  z ) )  -> 
( ( y  +Q  z )  e.  B  /\  x  <Q  z ) )
4339, 42sylbi 207 . . . . . . . . 9  |-  ( E. w ( w  =  ( y  +Q  z
)  /\  ( w  e.  B  /\  (
y  +Q  x ) 
<Q  w ) )  -> 
( ( y  +Q  z )  e.  B  /\  x  <Q  z ) )
4443eximi 1762 . . . . . . . 8  |-  ( E. z E. w ( w  =  ( y  +Q  z )  /\  ( w  e.  B  /\  ( y  +Q  x
)  <Q  w ) )  ->  E. z ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) )
453, 34, 443syl 18 . . . . . . 7  |-  ( ( B  e.  P.  /\  ( y  +Q  x
)  e.  B )  ->  E. z ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) )
4645anim2i 593 . . . . . 6  |-  ( ( -.  y  e.  A  /\  ( B  e.  P.  /\  ( y  +Q  x
)  e.  B ) )  ->  ( -.  y  e.  A  /\  E. z ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) ) )
4746an12s 843 . . . . 5  |-  ( ( B  e.  P.  /\  ( -.  y  e.  A  /\  ( y  +Q  x )  e.  B
) )  ->  ( -.  y  e.  A  /\  E. z ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) ) )
48 19.42v 1918 . . . . 5  |-  ( E. z ( -.  y  e.  A  /\  (
( y  +Q  z
)  e.  B  /\  x  <Q  z ) )  <-> 
( -.  y  e.  A  /\  E. z
( ( y  +Q  z )  e.  B  /\  x  <Q  z ) ) )
4947, 48sylibr 224 . . . 4  |-  ( ( B  e.  P.  /\  ( -.  y  e.  A  /\  ( y  +Q  x )  e.  B
) )  ->  E. z
( -.  y  e.  A  /\  ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) ) )
5049ex 450 . . 3  |-  ( B  e.  P.  ->  (
( -.  y  e.  A  /\  ( y  +Q  x )  e.  B )  ->  E. z
( -.  y  e.  A  /\  ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) ) ) )
5150eximdv 1846 . 2  |-  ( B  e.  P.  ->  ( E. y ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B )  ->  E. y E. z ( -.  y  e.  A  /\  ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) ) ) )
52 ltexprlem.1 . . 3  |-  C  =  { x  |  E. y ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B ) }
5352abeq2i 2735 . 2  |-  ( x  e.  C  <->  E. y
( -.  y  e.  A  /\  ( y  +Q  x )  e.  B ) )
54 vex 3203 . . . . . . 7  |-  z  e. 
_V
55 oveq2 6658 . . . . . . . . . 10  |-  ( x  =  z  ->  (
y  +Q  x )  =  ( y  +Q  z ) )
5655eleq1d 2686 . . . . . . . . 9  |-  ( x  =  z  ->  (
( y  +Q  x
)  e.  B  <->  ( y  +Q  z )  e.  B
) )
5756anbi2d 740 . . . . . . . 8  |-  ( x  =  z  ->  (
( -.  y  e.  A  /\  ( y  +Q  x )  e.  B )  <->  ( -.  y  e.  A  /\  ( y  +Q  z
)  e.  B ) ) )
5857exbidv 1850 . . . . . . 7  |-  ( x  =  z  ->  ( E. y ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B )  <->  E. y
( -.  y  e.  A  /\  ( y  +Q  z )  e.  B ) ) )
5954, 58, 52elab2 3354 . . . . . 6  |-  ( z  e.  C  <->  E. y
( -.  y  e.  A  /\  ( y  +Q  z )  e.  B ) )
6059anbi1i 731 . . . . 5  |-  ( ( z  e.  C  /\  x  <Q  z )  <->  ( E. y ( -.  y  e.  A  /\  (
y  +Q  z )  e.  B )  /\  x  <Q  z ) )
61 19.41v 1914 . . . . 5  |-  ( E. y ( ( -.  y  e.  A  /\  ( y  +Q  z
)  e.  B )  /\  x  <Q  z
)  <->  ( E. y
( -.  y  e.  A  /\  ( y  +Q  z )  e.  B )  /\  x  <Q  z ) )
62 anass 681 . . . . . 6  |-  ( ( ( -.  y  e.  A  /\  ( y  +Q  z )  e.  B )  /\  x  <Q  z )  <->  ( -.  y  e.  A  /\  ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) ) )
6362exbii 1774 . . . . 5  |-  ( E. y ( ( -.  y  e.  A  /\  ( y  +Q  z
)  e.  B )  /\  x  <Q  z
)  <->  E. y ( -.  y  e.  A  /\  ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) ) )
6460, 61, 633bitr2i 288 . . . 4  |-  ( ( z  e.  C  /\  x  <Q  z )  <->  E. y
( -.  y  e.  A  /\  ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) ) )
6564exbii 1774 . . 3  |-  ( E. z ( z  e.  C  /\  x  <Q  z )  <->  E. z E. y
( -.  y  e.  A  /\  ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) ) )
66 excom 2042 . . 3  |-  ( E. y E. z ( -.  y  e.  A  /\  ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) )  <->  E. z E. y
( -.  y  e.  A  /\  ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) ) )
6765, 66bitr4i 267 . 2  |-  ( E. z ( z  e.  C  /\  x  <Q  z )  <->  E. y E. z
( -.  y  e.  A  /\  ( ( y  +Q  z )  e.  B  /\  x  <Q  z ) ) )
6851, 53, 673imtr4g 285 1  |-  ( B  e.  P.  ->  (
x  e.  C  ->  E. z ( z  e.  C  /\  x  <Q  z ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   E.wrex 2913   class class class wbr 4653    X. cxp 5112  (class class class)co 6650   Q.cnq 9674    +Q cplq 9677    <Q cltq 9680   P.cnp 9681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-ltnq 9740  df-np 9803
This theorem is referenced by:  ltexprlem5  9862
  Copyright terms: Public domain W3C validator