![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnat | Structured version Visualization version Unicode version |
Description: The lattice translation of an atom is also an atom. TODO: See if this can shorten some ltrnel 35425 uses. (Contributed by NM, 25-May-2012.) |
Ref | Expression |
---|---|
ltrnel.l |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ltrnel.a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ltrnel.h |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ltrnel.t |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ltrnat |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1063 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqid 2622 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | ltrnel.a |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | atbase 34576 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | ltrnel.h |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | ltrnel.t |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 2, 3, 5, 6 | ltrnatb 35423 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 4, 7 | syl3an3 1361 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 1, 8 | mpbid 222 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-plt 16958 df-glb 16975 df-p0 17039 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-hlat 34638 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 |
This theorem is referenced by: ltrncoat 35430 trlcnv 35452 trljat2 35454 trlat 35456 trlval3 35474 trlval4 35475 cdlemc3 35480 cdlemc5 35482 cdlemg2kq 35890 cdlemg9a 35920 cdlemg9 35922 cdlemg10bALTN 35924 cdlemg10c 35927 cdlemg10a 35928 cdlemg10 35929 cdlemg12a 35931 cdlemg12c 35933 cdlemg13a 35939 cdlemg17a 35949 cdlemg17g 35955 cdlemg18a 35966 cdlemg18b 35967 cdlemg18c 35968 trlcoabs2N 36010 trlcolem 36014 cdlemg42 36017 cdlemi 36108 cdlemk3 36121 cdlemk4 36122 cdlemk6 36125 cdlemk9 36127 cdlemk9bN 36128 cdlemk10 36131 cdlemksat 36134 cdlemk7 36136 cdlemk12 36138 cdlemkole 36141 cdlemk14 36142 cdlemk15 36143 cdlemk17 36146 cdlemk5u 36149 cdlemk6u 36150 cdlemkuat 36154 cdlemk7u 36158 cdlemk12u 36160 cdlemk37 36202 cdlemk39 36204 cdlemkfid1N 36209 cdlemk47 36237 cdlemk48 36238 cdlemk50 36240 cdlemk51 36241 cdlemk52 36242 cdlemm10N 36407 |
Copyright terms: Public domain | W3C validator |