Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemm10N Structured version   Visualization version   GIF version

Theorem cdlemm10N 36407
Description: The image of the map 𝐺 is the entire one-dimensional subspace (𝐼𝑉). Remark after Lemma M of [Crawley] p. 121 line 23. (Contributed by NM, 24-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemm10.l = (le‘𝐾)
cdlemm10.j = (join‘𝐾)
cdlemm10.a 𝐴 = (Atoms‘𝐾)
cdlemm10.h 𝐻 = (LHyp‘𝐾)
cdlemm10.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemm10.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemm10.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
cdlemm10.c 𝐶 = {𝑟𝐴 ∣ (𝑟 (𝑃 𝑉) ∧ ¬ 𝑟 𝑊)}
cdlemm10.f 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑠)
cdlemm10.g 𝐺 = (𝑞𝐶 ↦ (𝑓𝑇 (𝑓𝑃) = 𝑞))
Assertion
Ref Expression
cdlemm10N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ran 𝐺 = (𝐼𝑉))
Distinct variable groups:   𝑓,𝑟,𝑠,   ,𝑟   𝐴,𝑓,𝑟,𝑠   𝑠,𝑞,𝐶   𝐺,𝑠   𝑓,𝐻,𝑠   𝑓,𝐾,𝑠   𝑓,𝑞,𝑃,𝑟,𝑠   𝑅,𝑓,𝑠   𝑇,𝑓,𝑞,𝑠   𝑓,𝑉,𝑟,𝑠   𝑓,𝑊,𝑟,𝑠
Allowed substitution hints:   𝐴(𝑞)   𝐶(𝑓,𝑟)   𝑅(𝑟,𝑞)   𝑇(𝑟)   𝐹(𝑓,𝑠,𝑟,𝑞)   𝐺(𝑓,𝑟,𝑞)   𝐻(𝑟,𝑞)   𝐼(𝑓,𝑠,𝑟,𝑞)   (𝑓,𝑠,𝑞)   𝐾(𝑟,𝑞)   (𝑞)   𝑉(𝑞)   𝑊(𝑞)

Proof of Theorem cdlemm10N
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 riotaex 6615 . . . . 5 (𝑓𝑇 (𝑓𝑃) = 𝑞) ∈ V
2 cdlemm10.g . . . . 5 𝐺 = (𝑞𝐶 ↦ (𝑓𝑇 (𝑓𝑃) = 𝑞))
31, 2fnmpti 6022 . . . 4 𝐺 Fn 𝐶
4 fvelrnb 6243 . . . 4 (𝐺 Fn 𝐶 → (𝑔 ∈ ran 𝐺 ↔ ∃𝑠𝐶 (𝐺𝑠) = 𝑔))
53, 4ax-mp 5 . . 3 (𝑔 ∈ ran 𝐺 ↔ ∃𝑠𝐶 (𝐺𝑠) = 𝑔)
6 eqeq2 2633 . . . . . . . . . . . 12 (𝑞 = 𝑠 → ((𝑓𝑃) = 𝑞 ↔ (𝑓𝑃) = 𝑠))
76riotabidv 6613 . . . . . . . . . . 11 (𝑞 = 𝑠 → (𝑓𝑇 (𝑓𝑃) = 𝑞) = (𝑓𝑇 (𝑓𝑃) = 𝑠))
8 riotaex 6615 . . . . . . . . . . 11 (𝑓𝑇 (𝑓𝑃) = 𝑠) ∈ V
97, 2, 8fvmpt 6282 . . . . . . . . . 10 (𝑠𝐶 → (𝐺𝑠) = (𝑓𝑇 (𝑓𝑃) = 𝑠))
10 cdlemm10.f . . . . . . . . . 10 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑠)
119, 10syl6eqr 2674 . . . . . . . . 9 (𝑠𝐶 → (𝐺𝑠) = 𝐹)
1211adantl 482 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ 𝑠𝐶) → (𝐺𝑠) = 𝐹)
1312eqeq1d 2624 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ 𝑠𝐶) → ((𝐺𝑠) = 𝑔𝐹 = 𝑔))
1413rexbidva 3049 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (∃𝑠𝐶 (𝐺𝑠) = 𝑔 ↔ ∃𝑠𝐶 𝐹 = 𝑔))
15 simpl1 1064 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 simprl 794 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝑔𝑇)
17 simpl2l 1114 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝑃𝐴)
18 cdlemm10.l . . . . . . . . . . . 12 = (le‘𝐾)
19 cdlemm10.a . . . . . . . . . . . 12 𝐴 = (Atoms‘𝐾)
20 cdlemm10.h . . . . . . . . . . . 12 𝐻 = (LHyp‘𝐾)
21 cdlemm10.t . . . . . . . . . . . 12 𝑇 = ((LTrn‘𝐾)‘𝑊)
2218, 19, 20, 21ltrnat 35426 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑃𝐴) → (𝑔𝑃) ∈ 𝐴)
2315, 16, 17, 22syl3anc 1326 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑔𝑃) ∈ 𝐴)
24 eqid 2622 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
25 simpl1l 1112 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝐾 ∈ HL)
26 hllat 34650 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2725, 26syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝐾 ∈ Lat)
2824, 19atbase 34576 . . . . . . . . . . . . . 14 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2917, 28syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝑃 ∈ (Base‘𝐾))
3024, 20, 21ltrncl 35411 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑃 ∈ (Base‘𝐾)) → (𝑔𝑃) ∈ (Base‘𝐾))
3115, 16, 29, 30syl3anc 1326 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑔𝑃) ∈ (Base‘𝐾))
32 cdlemm10.j . . . . . . . . . . . . . 14 = (join‘𝐾)
3324, 32latjcl 17051 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑔𝑃) ∈ (Base‘𝐾)) → (𝑃 (𝑔𝑃)) ∈ (Base‘𝐾))
3427, 29, 31, 33syl3anc 1326 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑃 (𝑔𝑃)) ∈ (Base‘𝐾))
35 simpl3l 1116 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝑉𝐴)
3624, 32, 19hlatjcl 34653 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑉𝐴) → (𝑃 𝑉) ∈ (Base‘𝐾))
3725, 17, 35, 36syl3anc 1326 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑃 𝑉) ∈ (Base‘𝐾))
3824, 18, 32latlej2 17061 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑔𝑃) ∈ (Base‘𝐾)) → (𝑔𝑃) (𝑃 (𝑔𝑃)))
3927, 29, 31, 38syl3anc 1326 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑔𝑃) (𝑃 (𝑔𝑃)))
40 simpl2 1065 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
41 cdlemm10.r . . . . . . . . . . . . . . 15 𝑅 = ((trL‘𝐾)‘𝑊)
4218, 32, 19, 20, 21, 41trljat1 35453 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝑔)) = (𝑃 (𝑔𝑃)))
4315, 16, 40, 42syl3anc 1326 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑃 (𝑅𝑔)) = (𝑃 (𝑔𝑃)))
44 simprr 796 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑅𝑔) 𝑉)
4524, 20, 21, 41trlcl 35451 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇) → (𝑅𝑔) ∈ (Base‘𝐾))
4615, 16, 45syl2anc 693 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑅𝑔) ∈ (Base‘𝐾))
4724, 19atbase 34576 . . . . . . . . . . . . . . . 16 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
4835, 47syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝑉 ∈ (Base‘𝐾))
4924, 18, 32latjlej2 17066 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ ((𝑅𝑔) ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → ((𝑅𝑔) 𝑉 → (𝑃 (𝑅𝑔)) (𝑃 𝑉)))
5027, 46, 48, 29, 49syl13anc 1328 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → ((𝑅𝑔) 𝑉 → (𝑃 (𝑅𝑔)) (𝑃 𝑉)))
5144, 50mpd 15 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑃 (𝑅𝑔)) (𝑃 𝑉))
5243, 51eqbrtrrd 4677 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑃 (𝑔𝑃)) (𝑃 𝑉))
5324, 18, 27, 31, 34, 37, 39, 52lattrd 17058 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑔𝑃) (𝑃 𝑉))
5418, 19, 20, 21ltrnel 35425 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑔𝑃) ∈ 𝐴 ∧ ¬ (𝑔𝑃) 𝑊))
5554simprd 479 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ¬ (𝑔𝑃) 𝑊)
5615, 16, 40, 55syl3anc 1326 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → ¬ (𝑔𝑃) 𝑊)
5753, 56jca 554 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → ((𝑔𝑃) (𝑃 𝑉) ∧ ¬ (𝑔𝑃) 𝑊))
58 breq1 4656 . . . . . . . . . . . 12 (𝑟 = (𝑔𝑃) → (𝑟 (𝑃 𝑉) ↔ (𝑔𝑃) (𝑃 𝑉)))
59 breq1 4656 . . . . . . . . . . . . 13 (𝑟 = (𝑔𝑃) → (𝑟 𝑊 ↔ (𝑔𝑃) 𝑊))
6059notbid 308 . . . . . . . . . . . 12 (𝑟 = (𝑔𝑃) → (¬ 𝑟 𝑊 ↔ ¬ (𝑔𝑃) 𝑊))
6158, 60anbi12d 747 . . . . . . . . . . 11 (𝑟 = (𝑔𝑃) → ((𝑟 (𝑃 𝑉) ∧ ¬ 𝑟 𝑊) ↔ ((𝑔𝑃) (𝑃 𝑉) ∧ ¬ (𝑔𝑃) 𝑊)))
62 cdlemm10.c . . . . . . . . . . 11 𝐶 = {𝑟𝐴 ∣ (𝑟 (𝑃 𝑉) ∧ ¬ 𝑟 𝑊)}
6361, 62elrab2 3366 . . . . . . . . . 10 ((𝑔𝑃) ∈ 𝐶 ↔ ((𝑔𝑃) ∈ 𝐴 ∧ ((𝑔𝑃) (𝑃 𝑉) ∧ ¬ (𝑔𝑃) 𝑊)))
6423, 57, 63sylanbrc 698 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑔𝑃) ∈ 𝐶)
6518, 19, 20, 21cdlemeiota 35873 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑔𝑇) → 𝑔 = (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)))
6615, 40, 16, 65syl3anc 1326 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝑔 = (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)))
6766eqcomd 2628 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)) = 𝑔)
68 eqeq2 2633 . . . . . . . . . . . . 13 (𝑠 = (𝑔𝑃) → ((𝑓𝑃) = 𝑠 ↔ (𝑓𝑃) = (𝑔𝑃)))
6968riotabidv 6613 . . . . . . . . . . . 12 (𝑠 = (𝑔𝑃) → (𝑓𝑇 (𝑓𝑃) = 𝑠) = (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)))
7010, 69syl5eq 2668 . . . . . . . . . . 11 (𝑠 = (𝑔𝑃) → 𝐹 = (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)))
7170eqeq1d 2624 . . . . . . . . . 10 (𝑠 = (𝑔𝑃) → (𝐹 = 𝑔 ↔ (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)) = 𝑔))
7271rspcev 3309 . . . . . . . . 9 (((𝑔𝑃) ∈ 𝐶 ∧ (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)) = 𝑔) → ∃𝑠𝐶 𝐹 = 𝑔)
7364, 67, 72syl2anc 693 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → ∃𝑠𝐶 𝐹 = 𝑔)
7473ex 450 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑔𝑇 ∧ (𝑅𝑔) 𝑉) → ∃𝑠𝐶 𝐹 = 𝑔))
75 breq1 4656 . . . . . . . . . . . . 13 (𝑟 = 𝑠 → (𝑟 (𝑃 𝑉) ↔ 𝑠 (𝑃 𝑉)))
76 breq1 4656 . . . . . . . . . . . . . 14 (𝑟 = 𝑠 → (𝑟 𝑊𝑠 𝑊))
7776notbid 308 . . . . . . . . . . . . 13 (𝑟 = 𝑠 → (¬ 𝑟 𝑊 ↔ ¬ 𝑠 𝑊))
7875, 77anbi12d 747 . . . . . . . . . . . 12 (𝑟 = 𝑠 → ((𝑟 (𝑃 𝑉) ∧ ¬ 𝑟 𝑊) ↔ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)))
7978, 62elrab2 3366 . . . . . . . . . . 11 (𝑠𝐶 ↔ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)))
80 simpl1 1064 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
81 simpl2l 1114 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑃𝐴)
82 simpl2r 1115 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ¬ 𝑃 𝑊)
83 simprl 794 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑠𝐴)
84 simprrr 805 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ¬ 𝑠 𝑊)
8518, 19, 20, 21, 10ltrniotacl 35867 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → 𝐹𝑇)
8618, 19, 20, 21, 10ltrniotaval 35869 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝐹𝑃) = 𝑠)
8785, 86jca 554 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠))
8880, 81, 82, 83, 84, 87syl122anc 1335 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠))
89 simp3l 1089 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → 𝐹𝑇)
90 simp11 1091 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
91 simp12 1092 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
92 eqid 2622 . . . . . . . . . . . . . . . . 17 (meet‘𝐾) = (meet‘𝐾)
9318, 32, 92, 19, 20, 21, 41trlval2 35450 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊))
9490, 89, 91, 93syl3anc 1326 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊))
95 simp3r 1090 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝐹𝑃) = 𝑠)
9695oveq2d 6666 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝑃 (𝐹𝑃)) = (𝑃 𝑠))
9796oveq1d 6665 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → ((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊) = ((𝑃 𝑠)(meet‘𝐾)𝑊))
9894, 97eqtrd 2656 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝑅𝐹) = ((𝑃 𝑠)(meet‘𝐾)𝑊))
99 simpl1l 1112 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝐾 ∈ HL)
100 simpl3l 1116 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑉𝐴)
10118, 32, 19hlatlej1 34661 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑉𝐴) → 𝑃 (𝑃 𝑉))
10299, 81, 100, 101syl3anc 1326 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑃 (𝑃 𝑉))
103 simprrl 804 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑠 (𝑃 𝑉))
10499, 26syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝐾 ∈ Lat)
10581, 28syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑃 ∈ (Base‘𝐾))
10624, 19atbase 34576 . . . . . . . . . . . . . . . . . . . 20 (𝑠𝐴𝑠 ∈ (Base‘𝐾))
107106ad2antrl 764 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑠 ∈ (Base‘𝐾))
10899, 81, 100, 36syl3anc 1326 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → (𝑃 𝑉) ∈ (Base‘𝐾))
10924, 18, 32latjle12 17062 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑠 ∈ (Base‘𝐾) ∧ (𝑃 𝑉) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑉) ∧ 𝑠 (𝑃 𝑉)) ↔ (𝑃 𝑠) (𝑃 𝑉)))
110104, 105, 107, 108, 109syl13anc 1328 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ((𝑃 (𝑃 𝑉) ∧ 𝑠 (𝑃 𝑉)) ↔ (𝑃 𝑠) (𝑃 𝑉)))
111102, 103, 110mpbi2and 956 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → (𝑃 𝑠) (𝑃 𝑉))
11224, 32, 19hlatjcl 34653 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑠𝐴) → (𝑃 𝑠) ∈ (Base‘𝐾))
11399, 81, 83, 112syl3anc 1326 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → (𝑃 𝑠) ∈ (Base‘𝐾))
114 simpl1r 1113 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑊𝐻)
11524, 20lhpbase 35284 . . . . . . . . . . . . . . . . . . 19 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
116114, 115syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑊 ∈ (Base‘𝐾))
11724, 18, 92latmlem1 17081 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ ((𝑃 𝑠) ∈ (Base‘𝐾) ∧ (𝑃 𝑉) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 𝑠) (𝑃 𝑉) → ((𝑃 𝑠)(meet‘𝐾)𝑊) ((𝑃 𝑉)(meet‘𝐾)𝑊)))
118104, 113, 108, 116, 117syl13anc 1328 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ((𝑃 𝑠) (𝑃 𝑉) → ((𝑃 𝑠)(meet‘𝐾)𝑊) ((𝑃 𝑉)(meet‘𝐾)𝑊)))
119111, 118mpd 15 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ((𝑃 𝑠)(meet‘𝐾)𝑊) ((𝑃 𝑉)(meet‘𝐾)𝑊))
12018, 32, 92, 19, 20lhpat4N 35330 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑃 𝑉)(meet‘𝐾)𝑊) = 𝑉)
121120adantr 481 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ((𝑃 𝑉)(meet‘𝐾)𝑊) = 𝑉)
122119, 121breqtrd 4679 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ((𝑃 𝑠)(meet‘𝐾)𝑊) 𝑉)
1231223adant3 1081 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → ((𝑃 𝑠)(meet‘𝐾)𝑊) 𝑉)
12498, 123eqbrtrd 4675 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝑅𝐹) 𝑉)
12589, 124jca 554 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝐹𝑇 ∧ (𝑅𝐹) 𝑉))
12688, 125mpd3an3 1425 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → (𝐹𝑇 ∧ (𝑅𝐹) 𝑉))
12779, 126sylan2b 492 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ 𝑠𝐶) → (𝐹𝑇 ∧ (𝑅𝐹) 𝑉))
128127ex 450 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑠𝐶 → (𝐹𝑇 ∧ (𝑅𝐹) 𝑉)))
129 eleq1 2689 . . . . . . . . . . 11 (𝐹 = 𝑔 → (𝐹𝑇𝑔𝑇))
130 fveq2 6191 . . . . . . . . . . . 12 (𝐹 = 𝑔 → (𝑅𝐹) = (𝑅𝑔))
131130breq1d 4663 . . . . . . . . . . 11 (𝐹 = 𝑔 → ((𝑅𝐹) 𝑉 ↔ (𝑅𝑔) 𝑉))
132129, 131anbi12d 747 . . . . . . . . . 10 (𝐹 = 𝑔 → ((𝐹𝑇 ∧ (𝑅𝐹) 𝑉) ↔ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)))
133132biimpcd 239 . . . . . . . . 9 ((𝐹𝑇 ∧ (𝑅𝐹) 𝑉) → (𝐹 = 𝑔 → (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)))
134128, 133syl6 35 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑠𝐶 → (𝐹 = 𝑔 → (𝑔𝑇 ∧ (𝑅𝑔) 𝑉))))
135134rexlimdv 3030 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (∃𝑠𝐶 𝐹 = 𝑔 → (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)))
13674, 135impbid 202 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑔𝑇 ∧ (𝑅𝑔) 𝑉) ↔ ∃𝑠𝐶 𝐹 = 𝑔))
13714, 136bitr4d 271 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (∃𝑠𝐶 (𝐺𝑠) = 𝑔 ↔ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)))
138 fveq2 6191 . . . . . . 7 (𝑓 = 𝑔 → (𝑅𝑓) = (𝑅𝑔))
139138breq1d 4663 . . . . . 6 (𝑓 = 𝑔 → ((𝑅𝑓) 𝑉 ↔ (𝑅𝑔) 𝑉))
140139elrab 3363 . . . . 5 (𝑔 ∈ {𝑓𝑇 ∣ (𝑅𝑓) 𝑉} ↔ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉))
141137, 140syl6bbr 278 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (∃𝑠𝐶 (𝐺𝑠) = 𝑔𝑔 ∈ {𝑓𝑇 ∣ (𝑅𝑓) 𝑉}))
142 simp1l 1085 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝐾 ∈ HL)
143 simp1r 1086 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑊𝐻)
144 simp3l 1089 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑉𝐴)
145144, 47syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑉 ∈ (Base‘𝐾))
146 simp3r 1090 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑉 𝑊)
147 cdlemm10.i . . . . . . 7 𝐼 = ((DIsoA‘𝐾)‘𝑊)
14824, 18, 20, 21, 41, 147diaval 36321 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑉 ∈ (Base‘𝐾) ∧ 𝑉 𝑊)) → (𝐼𝑉) = {𝑓𝑇 ∣ (𝑅𝑓) 𝑉})
149142, 143, 145, 146, 148syl22anc 1327 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝐼𝑉) = {𝑓𝑇 ∣ (𝑅𝑓) 𝑉})
150149eleq2d 2687 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑔 ∈ (𝐼𝑉) ↔ 𝑔 ∈ {𝑓𝑇 ∣ (𝑅𝑓) 𝑉}))
151141, 150bitr4d 271 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (∃𝑠𝐶 (𝐺𝑠) = 𝑔𝑔 ∈ (𝐼𝑉)))
1525, 151syl5bb 272 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑔 ∈ ran 𝐺𝑔 ∈ (𝐼𝑉)))
153152eqrdv 2620 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ran 𝐺 = (𝐼𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  {crab 2916   class class class wbr 4653  cmpt 4729  ran crn 5115   Fn wfn 5883  cfv 5888  crio 6610  (class class class)co 6650  Basecbs 15857  lecple 15948  joincjn 16944  meetcmee 16945  Latclat 17045  Atomscatm 34550  HLchlt 34637  LHypclh 35270  LTrncltrn 35387  trLctrl 35445  DIsoAcdia 36317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-disoa 36318
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator