MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map2xp Structured version   Visualization version   GIF version

Theorem map2xp 8130
Description: A cardinal power with exponent 2 is equivalent to a Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
map2xp (𝐴𝑉 → (𝐴𝑚 2𝑜) ≈ (𝐴 × 𝐴))

Proof of Theorem map2xp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df2o3 7573 . . . . 5 2𝑜 = {∅, 1𝑜}
2 df-pr 4180 . . . . 5 {∅, 1𝑜} = ({∅} ∪ {1𝑜})
31, 2eqtri 2644 . . . 4 2𝑜 = ({∅} ∪ {1𝑜})
43oveq2i 6661 . . 3 (𝐴𝑚 2𝑜) = (𝐴𝑚 ({∅} ∪ {1𝑜}))
5 snex 4908 . . . . 5 {∅} ∈ V
65a1i 11 . . . 4 (𝐴𝑉 → {∅} ∈ V)
7 snex 4908 . . . . 5 {1𝑜} ∈ V
87a1i 11 . . . 4 (𝐴𝑉 → {1𝑜} ∈ V)
9 id 22 . . . 4 (𝐴𝑉𝐴𝑉)
10 1n0 7575 . . . . . . . 8 1𝑜 ≠ ∅
1110neii 2796 . . . . . . 7 ¬ 1𝑜 = ∅
12 elsni 4194 . . . . . . 7 (1𝑜 ∈ {∅} → 1𝑜 = ∅)
1311, 12mto 188 . . . . . 6 ¬ 1𝑜 ∈ {∅}
14 disjsn 4246 . . . . . 6 (({∅} ∩ {1𝑜}) = ∅ ↔ ¬ 1𝑜 ∈ {∅})
1513, 14mpbir 221 . . . . 5 ({∅} ∩ {1𝑜}) = ∅
1615a1i 11 . . . 4 (𝐴𝑉 → ({∅} ∩ {1𝑜}) = ∅)
17 mapunen 8129 . . . 4 ((({∅} ∈ V ∧ {1𝑜} ∈ V ∧ 𝐴𝑉) ∧ ({∅} ∩ {1𝑜}) = ∅) → (𝐴𝑚 ({∅} ∪ {1𝑜})) ≈ ((𝐴𝑚 {∅}) × (𝐴𝑚 {1𝑜})))
186, 8, 9, 16, 17syl31anc 1329 . . 3 (𝐴𝑉 → (𝐴𝑚 ({∅} ∪ {1𝑜})) ≈ ((𝐴𝑚 {∅}) × (𝐴𝑚 {1𝑜})))
194, 18syl5eqbr 4688 . 2 (𝐴𝑉 → (𝐴𝑚 2𝑜) ≈ ((𝐴𝑚 {∅}) × (𝐴𝑚 {1𝑜})))
20 oveq1 6657 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑚 {∅}) = (𝐴𝑚 {∅}))
21 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
2220, 21breq12d 4666 . . . 4 (𝑥 = 𝐴 → ((𝑥𝑚 {∅}) ≈ 𝑥 ↔ (𝐴𝑚 {∅}) ≈ 𝐴))
23 vex 3203 . . . . 5 𝑥 ∈ V
24 0ex 4790 . . . . 5 ∅ ∈ V
2523, 24mapsnen 8035 . . . 4 (𝑥𝑚 {∅}) ≈ 𝑥
2622, 25vtoclg 3266 . . 3 (𝐴𝑉 → (𝐴𝑚 {∅}) ≈ 𝐴)
27 oveq1 6657 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑚 {1𝑜}) = (𝐴𝑚 {1𝑜}))
2827, 21breq12d 4666 . . . 4 (𝑥 = 𝐴 → ((𝑥𝑚 {1𝑜}) ≈ 𝑥 ↔ (𝐴𝑚 {1𝑜}) ≈ 𝐴))
29 df1o2 7572 . . . . . 6 1𝑜 = {∅}
3029, 5eqeltri 2697 . . . . 5 1𝑜 ∈ V
3123, 30mapsnen 8035 . . . 4 (𝑥𝑚 {1𝑜}) ≈ 𝑥
3228, 31vtoclg 3266 . . 3 (𝐴𝑉 → (𝐴𝑚 {1𝑜}) ≈ 𝐴)
33 xpen 8123 . . 3 (((𝐴𝑚 {∅}) ≈ 𝐴 ∧ (𝐴𝑚 {1𝑜}) ≈ 𝐴) → ((𝐴𝑚 {∅}) × (𝐴𝑚 {1𝑜})) ≈ (𝐴 × 𝐴))
3426, 32, 33syl2anc 693 . 2 (𝐴𝑉 → ((𝐴𝑚 {∅}) × (𝐴𝑚 {1𝑜})) ≈ (𝐴 × 𝐴))
35 entr 8008 . 2 (((𝐴𝑚 2𝑜) ≈ ((𝐴𝑚 {∅}) × (𝐴𝑚 {1𝑜})) ∧ ((𝐴𝑚 {∅}) × (𝐴𝑚 {1𝑜})) ≈ (𝐴 × 𝐴)) → (𝐴𝑚 2𝑜) ≈ (𝐴 × 𝐴))
3619, 34, 35syl2anc 693 1 (𝐴𝑉 → (𝐴𝑚 2𝑜) ≈ (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  cin 3573  c0 3915  {csn 4177  {cpr 4179   class class class wbr 4653   × cxp 5112  (class class class)co 6650  1𝑜c1o 7553  2𝑜c2o 7554  𝑚 cmap 7857  cen 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-1o 7560  df-2o 7561  df-er 7742  df-map 7859  df-en 7956  df-dom 7957
This theorem is referenced by:  pwxpndom2  9487
  Copyright terms: Public domain W3C validator