| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > map2xp | Structured version Visualization version Unicode version | ||
| Description: A cardinal power with exponent 2 is equivalent to a Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) |
| Ref | Expression |
|---|---|
| map2xp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o3 7573 |
. . . . 5
| |
| 2 | df-pr 4180 |
. . . . 5
| |
| 3 | 1, 2 | eqtri 2644 |
. . . 4
|
| 4 | 3 | oveq2i 6661 |
. . 3
|
| 5 | snex 4908 |
. . . . 5
| |
| 6 | 5 | a1i 11 |
. . . 4
|
| 7 | snex 4908 |
. . . . 5
| |
| 8 | 7 | a1i 11 |
. . . 4
|
| 9 | id 22 |
. . . 4
| |
| 10 | 1n0 7575 |
. . . . . . . 8
| |
| 11 | 10 | neii 2796 |
. . . . . . 7
|
| 12 | elsni 4194 |
. . . . . . 7
| |
| 13 | 11, 12 | mto 188 |
. . . . . 6
|
| 14 | disjsn 4246 |
. . . . . 6
| |
| 15 | 13, 14 | mpbir 221 |
. . . . 5
|
| 16 | 15 | a1i 11 |
. . . 4
|
| 17 | mapunen 8129 |
. . . 4
| |
| 18 | 6, 8, 9, 16, 17 | syl31anc 1329 |
. . 3
|
| 19 | 4, 18 | syl5eqbr 4688 |
. 2
|
| 20 | oveq1 6657 |
. . . . 5
| |
| 21 | id 22 |
. . . . 5
| |
| 22 | 20, 21 | breq12d 4666 |
. . . 4
|
| 23 | vex 3203 |
. . . . 5
| |
| 24 | 0ex 4790 |
. . . . 5
| |
| 25 | 23, 24 | mapsnen 8035 |
. . . 4
|
| 26 | 22, 25 | vtoclg 3266 |
. . 3
|
| 27 | oveq1 6657 |
. . . . 5
| |
| 28 | 27, 21 | breq12d 4666 |
. . . 4
|
| 29 | df1o2 7572 |
. . . . . 6
| |
| 30 | 29, 5 | eqeltri 2697 |
. . . . 5
|
| 31 | 23, 30 | mapsnen 8035 |
. . . 4
|
| 32 | 28, 31 | vtoclg 3266 |
. . 3
|
| 33 | xpen 8123 |
. . 3
| |
| 34 | 26, 32, 33 | syl2anc 693 |
. 2
|
| 35 | entr 8008 |
. 2
| |
| 36 | 19, 34, 35 | syl2anc 693 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-1o 7560 df-2o 7561 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 |
| This theorem is referenced by: pwxpndom2 9487 |
| Copyright terms: Public domain | W3C validator |