MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map2xp Structured version   Visualization version   Unicode version

Theorem map2xp 8130
Description: A cardinal power with exponent 2 is equivalent to a Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
map2xp  |-  ( A  e.  V  ->  ( A  ^m  2o )  ~~  ( A  X.  A
) )

Proof of Theorem map2xp
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df2o3 7573 . . . . 5  |-  2o  =  { (/) ,  1o }
2 df-pr 4180 . . . . 5  |-  { (/) ,  1o }  =  ( { (/) }  u.  { 1o } )
31, 2eqtri 2644 . . . 4  |-  2o  =  ( { (/) }  u.  { 1o } )
43oveq2i 6661 . . 3  |-  ( A  ^m  2o )  =  ( A  ^m  ( { (/) }  u.  { 1o } ) )
5 snex 4908 . . . . 5  |-  { (/) }  e.  _V
65a1i 11 . . . 4  |-  ( A  e.  V  ->  { (/) }  e.  _V )
7 snex 4908 . . . . 5  |-  { 1o }  e.  _V
87a1i 11 . . . 4  |-  ( A  e.  V  ->  { 1o }  e.  _V )
9 id 22 . . . 4  |-  ( A  e.  V  ->  A  e.  V )
10 1n0 7575 . . . . . . . 8  |-  1o  =/=  (/)
1110neii 2796 . . . . . . 7  |-  -.  1o  =  (/)
12 elsni 4194 . . . . . . 7  |-  ( 1o  e.  { (/) }  ->  1o  =  (/) )
1311, 12mto 188 . . . . . 6  |-  -.  1o  e.  { (/) }
14 disjsn 4246 . . . . . 6  |-  ( ( { (/) }  i^i  { 1o } )  =  (/)  <->  -.  1o  e.  { (/) } )
1513, 14mpbir 221 . . . . 5  |-  ( {
(/) }  i^i  { 1o } )  =  (/)
1615a1i 11 . . . 4  |-  ( A  e.  V  ->  ( { (/) }  i^i  { 1o } )  =  (/) )
17 mapunen 8129 . . . 4  |-  ( ( ( { (/) }  e.  _V  /\  { 1o }  e.  _V  /\  A  e.  V )  /\  ( { (/) }  i^i  { 1o } )  =  (/) )  ->  ( A  ^m  ( { (/) }  u.  { 1o } ) )  ~~  ( ( A  ^m  {
(/) } )  X.  ( A  ^m  { 1o }
) ) )
186, 8, 9, 16, 17syl31anc 1329 . . 3  |-  ( A  e.  V  ->  ( A  ^m  ( { (/) }  u.  { 1o }
) )  ~~  (
( A  ^m  { (/)
} )  X.  ( A  ^m  { 1o }
) ) )
194, 18syl5eqbr 4688 . 2  |-  ( A  e.  V  ->  ( A  ^m  2o )  ~~  ( ( A  ^m  {
(/) } )  X.  ( A  ^m  { 1o }
) ) )
20 oveq1 6657 . . . . 5  |-  ( x  =  A  ->  (
x  ^m  { (/) } )  =  ( A  ^m  {
(/) } ) )
21 id 22 . . . . 5  |-  ( x  =  A  ->  x  =  A )
2220, 21breq12d 4666 . . . 4  |-  ( x  =  A  ->  (
( x  ^m  { (/)
} )  ~~  x  <->  ( A  ^m  { (/) } )  ~~  A ) )
23 vex 3203 . . . . 5  |-  x  e. 
_V
24 0ex 4790 . . . . 5  |-  (/)  e.  _V
2523, 24mapsnen 8035 . . . 4  |-  ( x  ^m  { (/) } ) 
~~  x
2622, 25vtoclg 3266 . . 3  |-  ( A  e.  V  ->  ( A  ^m  { (/) } ) 
~~  A )
27 oveq1 6657 . . . . 5  |-  ( x  =  A  ->  (
x  ^m  { 1o } )  =  ( A  ^m  { 1o } ) )
2827, 21breq12d 4666 . . . 4  |-  ( x  =  A  ->  (
( x  ^m  { 1o } )  ~~  x  <->  ( A  ^m  { 1o } )  ~~  A
) )
29 df1o2 7572 . . . . . 6  |-  1o  =  { (/) }
3029, 5eqeltri 2697 . . . . 5  |-  1o  e.  _V
3123, 30mapsnen 8035 . . . 4  |-  ( x  ^m  { 1o }
)  ~~  x
3228, 31vtoclg 3266 . . 3  |-  ( A  e.  V  ->  ( A  ^m  { 1o }
)  ~~  A )
33 xpen 8123 . . 3  |-  ( ( ( A  ^m  { (/)
} )  ~~  A  /\  ( A  ^m  { 1o } )  ~~  A
)  ->  ( ( A  ^m  { (/) } )  X.  ( A  ^m  { 1o } ) ) 
~~  ( A  X.  A ) )
3426, 32, 33syl2anc 693 . 2  |-  ( A  e.  V  ->  (
( A  ^m  { (/)
} )  X.  ( A  ^m  { 1o }
) )  ~~  ( A  X.  A ) )
35 entr 8008 . 2  |-  ( ( ( A  ^m  2o )  ~~  ( ( A  ^m  { (/) } )  X.  ( A  ^m  { 1o } ) )  /\  ( ( A  ^m  { (/) } )  X.  ( A  ^m  { 1o } ) ) 
~~  ( A  X.  A ) )  -> 
( A  ^m  2o )  ~~  ( A  X.  A ) )
3619, 34, 35syl2anc 693 1  |-  ( A  e.  V  ->  ( A  ^m  2o )  ~~  ( A  X.  A
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   {cpr 4179   class class class wbr 4653    X. cxp 5112  (class class class)co 6650   1oc1o 7553   2oc2o 7554    ^m cmap 7857    ~~ cen 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-1o 7560  df-2o 7561  df-er 7742  df-map 7859  df-en 7956  df-dom 7957
This theorem is referenced by:  pwxpndom2  9487
  Copyright terms: Public domain W3C validator