Proof of Theorem mapcdaen
| Step | Hyp | Ref
| Expression |
| 1 | | cdaval 8992 |
. . . . 5
⊢ ((𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐵 +𝑐 𝐶) = ((𝐵 × {∅}) ∪ (𝐶 ×
{1𝑜}))) |
| 2 | 1 | 3adant1 1079 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐵 +𝑐 𝐶) = ((𝐵 × {∅}) ∪ (𝐶 ×
{1𝑜}))) |
| 3 | 2 | oveq2d 6666 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 ↑𝑚 (𝐵 +𝑐 𝐶)) = (𝐴 ↑𝑚 ((𝐵 × {∅}) ∪ (𝐶 ×
{1𝑜})))) |
| 4 | | simp2 1062 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝐵 ∈ 𝑊) |
| 5 | | snex 4908 |
. . . . 5
⊢ {∅}
∈ V |
| 6 | | xpexg 6960 |
. . . . 5
⊢ ((𝐵 ∈ 𝑊 ∧ {∅} ∈ V) → (𝐵 × {∅}) ∈
V) |
| 7 | 4, 5, 6 | sylancl 694 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐵 × {∅}) ∈
V) |
| 8 | | simp3 1063 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝐶 ∈ 𝑋) |
| 9 | | snex 4908 |
. . . . 5
⊢
{1𝑜} ∈ V |
| 10 | | xpexg 6960 |
. . . . 5
⊢ ((𝐶 ∈ 𝑋 ∧ {1𝑜} ∈ V)
→ (𝐶 ×
{1𝑜}) ∈ V) |
| 11 | 8, 9, 10 | sylancl 694 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐶 × {1𝑜}) ∈
V) |
| 12 | | simp1 1061 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝐴 ∈ 𝑉) |
| 13 | | xp01disj 7576 |
. . . . 5
⊢ ((𝐵 × {∅}) ∩ (𝐶 ×
{1𝑜})) = ∅ |
| 14 | 13 | a1i 11 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝐵 × {∅}) ∩ (𝐶 × {1𝑜})) =
∅) |
| 15 | | mapunen 8129 |
. . . 4
⊢ ((((𝐵 × {∅}) ∈ V
∧ (𝐶 ×
{1𝑜}) ∈ V ∧ 𝐴 ∈ 𝑉) ∧ ((𝐵 × {∅}) ∩ (𝐶 × {1𝑜})) =
∅) → (𝐴
↑𝑚 ((𝐵 × {∅}) ∪ (𝐶 × {1𝑜}))) ≈
((𝐴
↑𝑚 (𝐵 × {∅})) × (𝐴 ↑𝑚
(𝐶 ×
{1𝑜})))) |
| 16 | 7, 11, 12, 14, 15 | syl31anc 1329 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 ↑𝑚 ((𝐵 × {∅}) ∪ (𝐶 ×
{1𝑜}))) ≈ ((𝐴 ↑𝑚 (𝐵 × {∅})) ×
(𝐴
↑𝑚 (𝐶 ×
{1𝑜})))) |
| 17 | 3, 16 | eqbrtrd 4675 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 ↑𝑚 (𝐵 +𝑐 𝐶)) ≈ ((𝐴 ↑𝑚 (𝐵 × {∅})) ×
(𝐴
↑𝑚 (𝐶 ×
{1𝑜})))) |
| 18 | | enrefg 7987 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) |
| 19 | 12, 18 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝐴 ≈ 𝐴) |
| 20 | | 0ex 4790 |
. . . . 5
⊢ ∅
∈ V |
| 21 | | xpsneng 8045 |
. . . . 5
⊢ ((𝐵 ∈ 𝑊 ∧ ∅ ∈ V) → (𝐵 × {∅}) ≈
𝐵) |
| 22 | 4, 20, 21 | sylancl 694 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐵 × {∅}) ≈ 𝐵) |
| 23 | | mapen 8124 |
. . . 4
⊢ ((𝐴 ≈ 𝐴 ∧ (𝐵 × {∅}) ≈ 𝐵) → (𝐴 ↑𝑚 (𝐵 × {∅})) ≈
(𝐴
↑𝑚 𝐵)) |
| 24 | 19, 22, 23 | syl2anc 693 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 ↑𝑚 (𝐵 × {∅})) ≈
(𝐴
↑𝑚 𝐵)) |
| 25 | | 1on 7567 |
. . . . 5
⊢
1𝑜 ∈ On |
| 26 | | xpsneng 8045 |
. . . . 5
⊢ ((𝐶 ∈ 𝑋 ∧ 1𝑜 ∈ On)
→ (𝐶 ×
{1𝑜}) ≈ 𝐶) |
| 27 | 8, 25, 26 | sylancl 694 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐶 × {1𝑜}) ≈
𝐶) |
| 28 | | mapen 8124 |
. . . 4
⊢ ((𝐴 ≈ 𝐴 ∧ (𝐶 × {1𝑜}) ≈
𝐶) → (𝐴 ↑𝑚
(𝐶 ×
{1𝑜})) ≈ (𝐴 ↑𝑚 𝐶)) |
| 29 | 19, 27, 28 | syl2anc 693 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 ↑𝑚 (𝐶 ×
{1𝑜})) ≈ (𝐴 ↑𝑚 𝐶)) |
| 30 | | xpen 8123 |
. . 3
⊢ (((𝐴 ↑𝑚
(𝐵 × {∅}))
≈ (𝐴
↑𝑚 𝐵) ∧ (𝐴 ↑𝑚 (𝐶 ×
{1𝑜})) ≈ (𝐴 ↑𝑚 𝐶)) → ((𝐴 ↑𝑚 (𝐵 × {∅})) ×
(𝐴
↑𝑚 (𝐶 × {1𝑜}))) ≈
((𝐴
↑𝑚 𝐵) × (𝐴 ↑𝑚 𝐶))) |
| 31 | 24, 29, 30 | syl2anc 693 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝐴 ↑𝑚 (𝐵 × {∅})) ×
(𝐴
↑𝑚 (𝐶 × {1𝑜}))) ≈
((𝐴
↑𝑚 𝐵) × (𝐴 ↑𝑚 𝐶))) |
| 32 | | entr 8008 |
. 2
⊢ (((𝐴 ↑𝑚
(𝐵 +𝑐
𝐶)) ≈ ((𝐴 ↑𝑚
(𝐵 × {∅}))
× (𝐴
↑𝑚 (𝐶 × {1𝑜}))) ∧
((𝐴
↑𝑚 (𝐵 × {∅})) × (𝐴 ↑𝑚
(𝐶 ×
{1𝑜}))) ≈ ((𝐴 ↑𝑚 𝐵) × (𝐴 ↑𝑚 𝐶))) → (𝐴 ↑𝑚 (𝐵 +𝑐 𝐶)) ≈ ((𝐴 ↑𝑚 𝐵) × (𝐴 ↑𝑚 𝐶))) |
| 33 | 17, 31, 32 | syl2anc 693 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 ↑𝑚 (𝐵 +𝑐 𝐶)) ≈ ((𝐴 ↑𝑚 𝐵) × (𝐴 ↑𝑚 𝐶))) |