MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapcdaen Structured version   Visualization version   GIF version

Theorem mapcdaen 9006
Description: Sum of exponents law for cardinal arithmetic. Theorem 6I(4) of [Enderton] p. 142. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
mapcdaen ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴𝑚 (𝐵 +𝑐 𝐶)) ≈ ((𝐴𝑚 𝐵) × (𝐴𝑚 𝐶)))

Proof of Theorem mapcdaen
StepHypRef Expression
1 cdaval 8992 . . . . 5 ((𝐵𝑊𝐶𝑋) → (𝐵 +𝑐 𝐶) = ((𝐵 × {∅}) ∪ (𝐶 × {1𝑜})))
213adant1 1079 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐵 +𝑐 𝐶) = ((𝐵 × {∅}) ∪ (𝐶 × {1𝑜})))
32oveq2d 6666 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴𝑚 (𝐵 +𝑐 𝐶)) = (𝐴𝑚 ((𝐵 × {∅}) ∪ (𝐶 × {1𝑜}))))
4 simp2 1062 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐵𝑊)
5 snex 4908 . . . . 5 {∅} ∈ V
6 xpexg 6960 . . . . 5 ((𝐵𝑊 ∧ {∅} ∈ V) → (𝐵 × {∅}) ∈ V)
74, 5, 6sylancl 694 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐵 × {∅}) ∈ V)
8 simp3 1063 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐶𝑋)
9 snex 4908 . . . . 5 {1𝑜} ∈ V
10 xpexg 6960 . . . . 5 ((𝐶𝑋 ∧ {1𝑜} ∈ V) → (𝐶 × {1𝑜}) ∈ V)
118, 9, 10sylancl 694 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐶 × {1𝑜}) ∈ V)
12 simp1 1061 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐴𝑉)
13 xp01disj 7576 . . . . 5 ((𝐵 × {∅}) ∩ (𝐶 × {1𝑜})) = ∅
1413a1i 11 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐵 × {∅}) ∩ (𝐶 × {1𝑜})) = ∅)
15 mapunen 8129 . . . 4 ((((𝐵 × {∅}) ∈ V ∧ (𝐶 × {1𝑜}) ∈ V ∧ 𝐴𝑉) ∧ ((𝐵 × {∅}) ∩ (𝐶 × {1𝑜})) = ∅) → (𝐴𝑚 ((𝐵 × {∅}) ∪ (𝐶 × {1𝑜}))) ≈ ((𝐴𝑚 (𝐵 × {∅})) × (𝐴𝑚 (𝐶 × {1𝑜}))))
167, 11, 12, 14, 15syl31anc 1329 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴𝑚 ((𝐵 × {∅}) ∪ (𝐶 × {1𝑜}))) ≈ ((𝐴𝑚 (𝐵 × {∅})) × (𝐴𝑚 (𝐶 × {1𝑜}))))
173, 16eqbrtrd 4675 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴𝑚 (𝐵 +𝑐 𝐶)) ≈ ((𝐴𝑚 (𝐵 × {∅})) × (𝐴𝑚 (𝐶 × {1𝑜}))))
18 enrefg 7987 . . . . 5 (𝐴𝑉𝐴𝐴)
1912, 18syl 17 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐴𝐴)
20 0ex 4790 . . . . 5 ∅ ∈ V
21 xpsneng 8045 . . . . 5 ((𝐵𝑊 ∧ ∅ ∈ V) → (𝐵 × {∅}) ≈ 𝐵)
224, 20, 21sylancl 694 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐵 × {∅}) ≈ 𝐵)
23 mapen 8124 . . . 4 ((𝐴𝐴 ∧ (𝐵 × {∅}) ≈ 𝐵) → (𝐴𝑚 (𝐵 × {∅})) ≈ (𝐴𝑚 𝐵))
2419, 22, 23syl2anc 693 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴𝑚 (𝐵 × {∅})) ≈ (𝐴𝑚 𝐵))
25 1on 7567 . . . . 5 1𝑜 ∈ On
26 xpsneng 8045 . . . . 5 ((𝐶𝑋 ∧ 1𝑜 ∈ On) → (𝐶 × {1𝑜}) ≈ 𝐶)
278, 25, 26sylancl 694 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐶 × {1𝑜}) ≈ 𝐶)
28 mapen 8124 . . . 4 ((𝐴𝐴 ∧ (𝐶 × {1𝑜}) ≈ 𝐶) → (𝐴𝑚 (𝐶 × {1𝑜})) ≈ (𝐴𝑚 𝐶))
2919, 27, 28syl2anc 693 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴𝑚 (𝐶 × {1𝑜})) ≈ (𝐴𝑚 𝐶))
30 xpen 8123 . . 3 (((𝐴𝑚 (𝐵 × {∅})) ≈ (𝐴𝑚 𝐵) ∧ (𝐴𝑚 (𝐶 × {1𝑜})) ≈ (𝐴𝑚 𝐶)) → ((𝐴𝑚 (𝐵 × {∅})) × (𝐴𝑚 (𝐶 × {1𝑜}))) ≈ ((𝐴𝑚 𝐵) × (𝐴𝑚 𝐶)))
3124, 29, 30syl2anc 693 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴𝑚 (𝐵 × {∅})) × (𝐴𝑚 (𝐶 × {1𝑜}))) ≈ ((𝐴𝑚 𝐵) × (𝐴𝑚 𝐶)))
32 entr 8008 . 2 (((𝐴𝑚 (𝐵 +𝑐 𝐶)) ≈ ((𝐴𝑚 (𝐵 × {∅})) × (𝐴𝑚 (𝐶 × {1𝑜}))) ∧ ((𝐴𝑚 (𝐵 × {∅})) × (𝐴𝑚 (𝐶 × {1𝑜}))) ≈ ((𝐴𝑚 𝐵) × (𝐴𝑚 𝐶))) → (𝐴𝑚 (𝐵 +𝑐 𝐶)) ≈ ((𝐴𝑚 𝐵) × (𝐴𝑚 𝐶)))
3317, 31, 32syl2anc 693 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴𝑚 (𝐵 +𝑐 𝐶)) ≈ ((𝐴𝑚 𝐵) × (𝐴𝑚 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  cin 3573  c0 3915  {csn 4177   class class class wbr 4653   × cxp 5112  Oncon0 5723  (class class class)co 6650  1𝑜c1o 7553  𝑚 cmap 7857  cen 7952   +𝑐 ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-1o 7560  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-cda 8990
This theorem is referenced by:  pwcdaen  9007
  Copyright terms: Public domain W3C validator