![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwcdaen | Structured version Visualization version GIF version |
Description: Sum of exponents law for cardinal arithmetic. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
pwcdaen | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 +𝑐 𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 6678 | . . 3 ⊢ (𝐴 +𝑐 𝐵) ∈ V | |
2 | 1 | pw2en 8067 | . 2 ⊢ 𝒫 (𝐴 +𝑐 𝐵) ≈ (2𝑜 ↑𝑚 (𝐴 +𝑐 𝐵)) |
3 | 2on 7568 | . . . 4 ⊢ 2𝑜 ∈ On | |
4 | mapcdaen 9006 | . . . 4 ⊢ ((2𝑜 ∈ On ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2𝑜 ↑𝑚 (𝐴 +𝑐 𝐵)) ≈ ((2𝑜 ↑𝑚 𝐴) × (2𝑜 ↑𝑚 𝐵))) | |
5 | 3, 4 | mp3an1 1411 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2𝑜 ↑𝑚 (𝐴 +𝑐 𝐵)) ≈ ((2𝑜 ↑𝑚 𝐴) × (2𝑜 ↑𝑚 𝐵))) |
6 | pw2eng 8066 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≈ (2𝑜 ↑𝑚 𝐴)) | |
7 | pw2eng 8066 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → 𝒫 𝐵 ≈ (2𝑜 ↑𝑚 𝐵)) | |
8 | xpen 8123 | . . . . 5 ⊢ ((𝒫 𝐴 ≈ (2𝑜 ↑𝑚 𝐴) ∧ 𝒫 𝐵 ≈ (2𝑜 ↑𝑚 𝐵)) → (𝒫 𝐴 × 𝒫 𝐵) ≈ ((2𝑜 ↑𝑚 𝐴) × (2𝑜 ↑𝑚 𝐵))) | |
9 | 6, 7, 8 | syl2an 494 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐴 × 𝒫 𝐵) ≈ ((2𝑜 ↑𝑚 𝐴) × (2𝑜 ↑𝑚 𝐵))) |
10 | enen2 8101 | . . . 4 ⊢ ((𝒫 𝐴 × 𝒫 𝐵) ≈ ((2𝑜 ↑𝑚 𝐴) × (2𝑜 ↑𝑚 𝐵)) → ((2𝑜 ↑𝑚 (𝐴 +𝑐 𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵) ↔ (2𝑜 ↑𝑚 (𝐴 +𝑐 𝐵)) ≈ ((2𝑜 ↑𝑚 𝐴) × (2𝑜 ↑𝑚 𝐵)))) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((2𝑜 ↑𝑚 (𝐴 +𝑐 𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵) ↔ (2𝑜 ↑𝑚 (𝐴 +𝑐 𝐵)) ≈ ((2𝑜 ↑𝑚 𝐴) × (2𝑜 ↑𝑚 𝐵)))) |
12 | 5, 11 | mpbird 247 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2𝑜 ↑𝑚 (𝐴 +𝑐 𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵)) |
13 | entr 8008 | . 2 ⊢ ((𝒫 (𝐴 +𝑐 𝐵) ≈ (2𝑜 ↑𝑚 (𝐴 +𝑐 𝐵)) ∧ (2𝑜 ↑𝑚 (𝐴 +𝑐 𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵)) → 𝒫 (𝐴 +𝑐 𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵)) | |
14 | 2, 12, 13 | sylancr 695 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 +𝑐 𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∈ wcel 1990 𝒫 cpw 4158 class class class wbr 4653 × cxp 5112 Oncon0 5723 (class class class)co 6650 2𝑜c2o 7554 ↑𝑚 cmap 7857 ≈ cen 7952 +𝑐 ccda 8989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-1o 7560 df-2o 7561 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-cda 8990 |
This theorem is referenced by: pwcda1 9016 pwcdadom 9038 canthp1lem1 9474 gchxpidm 9491 gchhar 9501 |
Copyright terms: Public domain | W3C validator |