MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapfienlem3 Structured version   Visualization version   GIF version

Theorem mapfienlem3 8312
Description: Lemma 3 for mapfien 8313. (Contributed by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
mapfien.s 𝑆 = {𝑥 ∈ (𝐵𝑚 𝐴) ∣ 𝑥 finSupp 𝑍}
mapfien.t 𝑇 = {𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp 𝑊}
mapfien.w 𝑊 = (𝐺𝑍)
mapfien.f (𝜑𝐹:𝐶1-1-onto𝐴)
mapfien.g (𝜑𝐺:𝐵1-1-onto𝐷)
mapfien.a (𝜑𝐴 ∈ V)
mapfien.b (𝜑𝐵 ∈ V)
mapfien.c (𝜑𝐶 ∈ V)
mapfien.d (𝜑𝐷 ∈ V)
mapfien.z (𝜑𝑍𝐵)
Assertion
Ref Expression
mapfienlem3 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹) ∈ 𝑆)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑔,𝐹   𝑔,𝐺,𝑥   𝜑,𝑔   𝑥,𝐷   𝑆,𝑔   𝑇,𝑔   𝑥,𝑊   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑔)   𝐵(𝑔)   𝐶(𝑔)   𝐷(𝑔)   𝑆(𝑥)   𝑇(𝑥)   𝑊(𝑔)   𝑍(𝑔)

Proof of Theorem mapfienlem3
StepHypRef Expression
1 mapfien.g . . . . . . 7 (𝜑𝐺:𝐵1-1-onto𝐷)
2 f1ocnv 6149 . . . . . . 7 (𝐺:𝐵1-1-onto𝐷𝐺:𝐷1-1-onto𝐵)
3 f1of 6137 . . . . . . 7 (𝐺:𝐷1-1-onto𝐵𝐺:𝐷𝐵)
41, 2, 33syl 18 . . . . . 6 (𝜑𝐺:𝐷𝐵)
54adantr 481 . . . . 5 ((𝜑𝑔𝑇) → 𝐺:𝐷𝐵)
6 elrabi 3359 . . . . . . . 8 (𝑔 ∈ {𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp 𝑊} → 𝑔 ∈ (𝐷𝑚 𝐶))
7 mapfien.t . . . . . . . 8 𝑇 = {𝑥 ∈ (𝐷𝑚 𝐶) ∣ 𝑥 finSupp 𝑊}
86, 7eleq2s 2719 . . . . . . 7 (𝑔𝑇𝑔 ∈ (𝐷𝑚 𝐶))
98adantl 482 . . . . . 6 ((𝜑𝑔𝑇) → 𝑔 ∈ (𝐷𝑚 𝐶))
10 elmapi 7879 . . . . . 6 (𝑔 ∈ (𝐷𝑚 𝐶) → 𝑔:𝐶𝐷)
119, 10syl 17 . . . . 5 ((𝜑𝑔𝑇) → 𝑔:𝐶𝐷)
12 fco 6058 . . . . 5 ((𝐺:𝐷𝐵𝑔:𝐶𝐷) → (𝐺𝑔):𝐶𝐵)
135, 11, 12syl2anc 693 . . . 4 ((𝜑𝑔𝑇) → (𝐺𝑔):𝐶𝐵)
14 mapfien.f . . . . . 6 (𝜑𝐹:𝐶1-1-onto𝐴)
15 f1ocnv 6149 . . . . . 6 (𝐹:𝐶1-1-onto𝐴𝐹:𝐴1-1-onto𝐶)
16 f1of 6137 . . . . . 6 (𝐹:𝐴1-1-onto𝐶𝐹:𝐴𝐶)
1714, 15, 163syl 18 . . . . 5 (𝜑𝐹:𝐴𝐶)
1817adantr 481 . . . 4 ((𝜑𝑔𝑇) → 𝐹:𝐴𝐶)
19 fco 6058 . . . 4 (((𝐺𝑔):𝐶𝐵𝐹:𝐴𝐶) → ((𝐺𝑔) ∘ 𝐹):𝐴𝐵)
2013, 18, 19syl2anc 693 . . 3 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹):𝐴𝐵)
21 mapfien.b . . . . 5 (𝜑𝐵 ∈ V)
22 mapfien.a . . . . 5 (𝜑𝐴 ∈ V)
2321, 22elmapd 7871 . . . 4 (𝜑 → (((𝐺𝑔) ∘ 𝐹) ∈ (𝐵𝑚 𝐴) ↔ ((𝐺𝑔) ∘ 𝐹):𝐴𝐵))
2423adantr 481 . . 3 ((𝜑𝑔𝑇) → (((𝐺𝑔) ∘ 𝐹) ∈ (𝐵𝑚 𝐴) ↔ ((𝐺𝑔) ∘ 𝐹):𝐴𝐵))
2520, 24mpbird 247 . 2 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹) ∈ (𝐵𝑚 𝐴))
26 mapfien.s . . 3 𝑆 = {𝑥 ∈ (𝐵𝑚 𝐴) ∣ 𝑥 finSupp 𝑍}
27 mapfien.w . . 3 𝑊 = (𝐺𝑍)
28 mapfien.c . . 3 (𝜑𝐶 ∈ V)
29 mapfien.d . . 3 (𝜑𝐷 ∈ V)
30 mapfien.z . . 3 (𝜑𝑍𝐵)
3126, 7, 27, 14, 1, 22, 21, 28, 29, 30mapfienlem2 8311 . 2 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹) finSupp 𝑍)
32 breq1 4656 . . 3 (𝑥 = ((𝐺𝑔) ∘ 𝐹) → (𝑥 finSupp 𝑍 ↔ ((𝐺𝑔) ∘ 𝐹) finSupp 𝑍))
3332, 26elrab2 3366 . 2 (((𝐺𝑔) ∘ 𝐹) ∈ 𝑆 ↔ (((𝐺𝑔) ∘ 𝐹) ∈ (𝐵𝑚 𝐴) ∧ ((𝐺𝑔) ∘ 𝐹) finSupp 𝑍))
3425, 31, 33sylanbrc 698 1 ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200   class class class wbr 4653  ccnv 5113  ccom 5118  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  𝑚 cmap 7857   finSupp cfsupp 8275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-1o 7560  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-fin 7959  df-fsupp 8276
This theorem is referenced by:  mapfien  8313
  Copyright terms: Public domain W3C validator