![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mptcfsupp | Structured version Visualization version GIF version |
Description: A mapping with value 0 except of one is finitely supported. (Contributed by AV, 9-Jun-2019.) |
Ref | Expression |
---|---|
suppmptcfin.b | ⊢ 𝐵 = (Base‘𝑀) |
suppmptcfin.r | ⊢ 𝑅 = (Scalar‘𝑀) |
suppmptcfin.0 | ⊢ 0 = (0g‘𝑅) |
suppmptcfin.1 | ⊢ 1 = (1r‘𝑅) |
suppmptcfin.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) |
Ref | Expression |
---|---|
mptcfsupp | ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝐹 finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppmptcfin.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) | |
2 | 1 | funmpt2 5927 | . . 3 ⊢ Fun 𝐹 |
3 | 2 | a1i 11 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → Fun 𝐹) |
4 | suppmptcfin.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
5 | suppmptcfin.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑀) | |
6 | suppmptcfin.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
7 | suppmptcfin.1 | . . 3 ⊢ 1 = (1r‘𝑅) | |
8 | 4, 5, 6, 7, 1 | suppmptcfin 42160 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹 supp 0 ) ∈ Fin) |
9 | mptexg 6484 | . . . . 5 ⊢ (𝑉 ∈ 𝒫 𝐵 → (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) ∈ V) | |
10 | 1, 9 | syl5eqel 2705 | . . . 4 ⊢ (𝑉 ∈ 𝒫 𝐵 → 𝐹 ∈ V) |
11 | 10 | 3ad2ant2 1083 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ V) |
12 | fvex 6201 | . . . 4 ⊢ (0g‘𝑅) ∈ V | |
13 | 6, 12 | eqeltri 2697 | . . 3 ⊢ 0 ∈ V |
14 | isfsupp 8279 | . . 3 ⊢ ((𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 finSupp 0 ↔ (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈ Fin))) | |
15 | 11, 13, 14 | sylancl 694 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹 finSupp 0 ↔ (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈ Fin))) |
16 | 3, 8, 15 | mpbir2and 957 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝐹 finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ifcif 4086 𝒫 cpw 4158 class class class wbr 4653 ↦ cmpt 4729 Fun wfun 5882 ‘cfv 5888 (class class class)co 6650 supp csupp 7295 Fincfn 7955 finSupp cfsupp 8275 Basecbs 15857 Scalarcsca 15944 0gc0g 16100 1rcur 18501 LModclmod 18863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-supp 7296 df-1o 7560 df-er 7742 df-en 7956 df-fin 7959 df-fsupp 8276 |
This theorem is referenced by: lcoss 42225 el0ldep 42255 |
Copyright terms: Public domain | W3C validator |