| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2622 |
. . . . 5
⊢
(Base‘𝑀) =
(Base‘𝑀) |
| 2 | | eqid 2622 |
. . . . 5
⊢
(Scalar‘𝑀) =
(Scalar‘𝑀) |
| 3 | | eqid 2622 |
. . . . 5
⊢
(0g‘(Scalar‘𝑀)) =
(0g‘(Scalar‘𝑀)) |
| 4 | | eqid 2622 |
. . . . 5
⊢
(1r‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀)) |
| 5 | | eqeq1 2626 |
. . . . . . 7
⊢ (𝑠 = 𝑦 → (𝑠 = (0g‘𝑀) ↔ 𝑦 = (0g‘𝑀))) |
| 6 | 5 | ifbid 4108 |
. . . . . 6
⊢ (𝑠 = 𝑦 → if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))) = if(𝑦 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) |
| 7 | 6 | cbvmptv 4750 |
. . . . 5
⊢ (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) = (𝑦 ∈ 𝑆 ↦ if(𝑦 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) |
| 8 | 1, 2, 3, 4, 7 | mptcfsupp 42161 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫
(Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) finSupp
(0g‘(Scalar‘𝑀))) |
| 9 | 8 | 3adant1r 1319 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ 1 <
(#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) finSupp
(0g‘(Scalar‘𝑀))) |
| 10 | | simp1l 1085 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 1 <
(#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → 𝑀 ∈ LMod) |
| 11 | | simp2 1062 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 1 <
(#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → 𝑆 ∈ 𝒫
(Base‘𝑀)) |
| 12 | | eqid 2622 |
. . . . 5
⊢
(0g‘𝑀) = (0g‘𝑀) |
| 13 | | eqid 2622 |
. . . . 5
⊢ (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) = (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) |
| 14 | 1, 2, 3, 4, 12, 13 | linc0scn0 42212 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫
(Base‘𝑀)) →
((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g‘𝑀)) |
| 15 | 10, 11, 14 | syl2anc 693 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ 1 <
(#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g‘𝑀)) |
| 16 | | simp3 1063 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 1 <
(#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) →
(0g‘𝑀)
∈ 𝑆) |
| 17 | | fveq2 6191 |
. . . . . 6
⊢ (𝑥 = (0g‘𝑀) → ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘𝑥) = ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘(0g‘𝑀))) |
| 18 | 17 | neeq1d 2853 |
. . . . 5
⊢ (𝑥 = (0g‘𝑀) → (((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘𝑥) ≠
(0g‘(Scalar‘𝑀)) ↔ ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘(0g‘𝑀)) ≠
(0g‘(Scalar‘𝑀)))) |
| 19 | 18 | adantl 482 |
. . . 4
⊢ ((((𝑀 ∈ LMod ∧ 1 <
(#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) ∧ 𝑥 = (0g‘𝑀)) → (((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘𝑥) ≠
(0g‘(Scalar‘𝑀)) ↔ ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘(0g‘𝑀)) ≠
(0g‘(Scalar‘𝑀)))) |
| 20 | | fvexd 6203 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 1 <
(#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) →
(1r‘(Scalar‘𝑀)) ∈ V) |
| 21 | | iftrue 4092 |
. . . . . . 7
⊢ (𝑠 = (0g‘𝑀) → if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))) =
(1r‘(Scalar‘𝑀))) |
| 22 | 21, 13 | fvmptg 6280 |
. . . . . 6
⊢
(((0g‘𝑀) ∈ 𝑆 ∧
(1r‘(Scalar‘𝑀)) ∈ V) → ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘(0g‘𝑀)) =
(1r‘(Scalar‘𝑀))) |
| 23 | 16, 20, 22 | syl2anc 693 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 1 <
(#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘(0g‘𝑀)) =
(1r‘(Scalar‘𝑀))) |
| 24 | 2 | lmodring 18871 |
. . . . . . . 8
⊢ (𝑀 ∈ LMod →
(Scalar‘𝑀) ∈
Ring) |
| 25 | 24 | anim1i 592 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ 1 <
(#‘(Base‘(Scalar‘𝑀)))) → ((Scalar‘𝑀) ∈ Ring ∧ 1 <
(#‘(Base‘(Scalar‘𝑀))))) |
| 26 | 25 | 3ad2ant1 1082 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 1 <
(#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) →
((Scalar‘𝑀) ∈
Ring ∧ 1 < (#‘(Base‘(Scalar‘𝑀))))) |
| 27 | | eqid 2622 |
. . . . . . 7
⊢
(Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) |
| 28 | 27, 4, 3 | ring1ne0 18591 |
. . . . . 6
⊢
(((Scalar‘𝑀)
∈ Ring ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) →
(1r‘(Scalar‘𝑀)) ≠
(0g‘(Scalar‘𝑀))) |
| 29 | 26, 28 | syl 17 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 1 <
(#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) →
(1r‘(Scalar‘𝑀)) ≠
(0g‘(Scalar‘𝑀))) |
| 30 | 23, 29 | eqnetrd 2861 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 1 <
(#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘(0g‘𝑀)) ≠
(0g‘(Scalar‘𝑀))) |
| 31 | 16, 19, 30 | rspcedvd 3317 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ 1 <
(#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) →
∃𝑥 ∈ 𝑆 ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘𝑥) ≠
(0g‘(Scalar‘𝑀))) |
| 32 | 2, 27, 4 | lmod1cl 18890 |
. . . . . . . . . 10
⊢ (𝑀 ∈ LMod →
(1r‘(Scalar‘𝑀)) ∈ (Base‘(Scalar‘𝑀))) |
| 33 | 2, 27, 3 | lmod0cl 18889 |
. . . . . . . . . 10
⊢ (𝑀 ∈ LMod →
(0g‘(Scalar‘𝑀)) ∈ (Base‘(Scalar‘𝑀))) |
| 34 | 32, 33 | ifcld 4131 |
. . . . . . . . 9
⊢ (𝑀 ∈ LMod → if(𝑠 = (0g‘𝑀),
(1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) ∈
(Base‘(Scalar‘𝑀))) |
| 35 | 34 | adantr 481 |
. . . . . . . 8
⊢ ((𝑀 ∈ LMod ∧ 1 <
(#‘(Base‘(Scalar‘𝑀)))) → if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))) ∈ (Base‘(Scalar‘𝑀))) |
| 36 | 35 | 3ad2ant1 1082 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ 1 <
(#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → if(𝑠 = (0g‘𝑀),
(1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) ∈
(Base‘(Scalar‘𝑀))) |
| 37 | 36 | adantr 481 |
. . . . . 6
⊢ ((((𝑀 ∈ LMod ∧ 1 <
(#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) ∧ 𝑠 ∈ 𝑆) → if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))) ∈ (Base‘(Scalar‘𝑀))) |
| 38 | 37, 13 | fmptd 6385 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 1 <
(#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))):𝑆⟶(Base‘(Scalar‘𝑀))) |
| 39 | | fvexd 6203 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 1 <
(#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) →
(Base‘(Scalar‘𝑀)) ∈ V) |
| 40 | 39, 11 | elmapd 7871 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 1 <
(#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚
𝑆) ↔ (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))):𝑆⟶(Base‘(Scalar‘𝑀)))) |
| 41 | 38, 40 | mpbird 247 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 1 <
(#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚
𝑆)) |
| 42 | | breq1 4656 |
. . . . . 6
⊢ (𝑓 = (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) → (𝑓 finSupp
(0g‘(Scalar‘𝑀)) ↔ (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) finSupp
(0g‘(Scalar‘𝑀)))) |
| 43 | | oveq1 6657 |
. . . . . . 7
⊢ (𝑓 = (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) → (𝑓( linC ‘𝑀)𝑆) = ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆)) |
| 44 | 43 | eqeq1d 2624 |
. . . . . 6
⊢ (𝑓 = (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) → ((𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀) ↔ ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g‘𝑀))) |
| 45 | | fveq1 6190 |
. . . . . . . 8
⊢ (𝑓 = (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) → (𝑓‘𝑥) = ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘𝑥)) |
| 46 | 45 | neeq1d 2853 |
. . . . . . 7
⊢ (𝑓 = (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) → ((𝑓‘𝑥) ≠
(0g‘(Scalar‘𝑀)) ↔ ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘𝑥) ≠
(0g‘(Scalar‘𝑀)))) |
| 47 | 46 | rexbidv 3052 |
. . . . . 6
⊢ (𝑓 = (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) → (∃𝑥 ∈ 𝑆 (𝑓‘𝑥) ≠
(0g‘(Scalar‘𝑀)) ↔ ∃𝑥 ∈ 𝑆 ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘𝑥) ≠
(0g‘(Scalar‘𝑀)))) |
| 48 | 42, 44, 47 | 3anbi123d 1399 |
. . . . 5
⊢ (𝑓 = (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) → ((𝑓 finSupp
(0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀) ∧ ∃𝑥 ∈ 𝑆 (𝑓‘𝑥) ≠
(0g‘(Scalar‘𝑀))) ↔ ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) finSupp
(0g‘(Scalar‘𝑀)) ∧ ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g‘𝑀) ∧ ∃𝑥 ∈ 𝑆 ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘𝑥) ≠
(0g‘(Scalar‘𝑀))))) |
| 49 | 48 | adantl 482 |
. . . 4
⊢ ((((𝑀 ∈ LMod ∧ 1 <
(#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) ∧ 𝑓 = (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))) → ((𝑓 finSupp
(0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀) ∧ ∃𝑥 ∈ 𝑆 (𝑓‘𝑥) ≠
(0g‘(Scalar‘𝑀))) ↔ ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) finSupp
(0g‘(Scalar‘𝑀)) ∧ ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g‘𝑀) ∧ ∃𝑥 ∈ 𝑆 ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘𝑥) ≠
(0g‘(Scalar‘𝑀))))) |
| 50 | 41, 49 | rspcedv 3313 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ 1 <
(#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → (((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) finSupp
(0g‘(Scalar‘𝑀)) ∧ ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g‘𝑀) ∧ ∃𝑥 ∈ 𝑆 ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘𝑥) ≠
(0g‘(Scalar‘𝑀))) → ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚
𝑆)(𝑓 finSupp
(0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀) ∧ ∃𝑥 ∈ 𝑆 (𝑓‘𝑥) ≠
(0g‘(Scalar‘𝑀))))) |
| 51 | 9, 15, 31, 50 | mp3and 1427 |
. 2
⊢ (((𝑀 ∈ LMod ∧ 1 <
(#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) →
∃𝑓 ∈
((Base‘(Scalar‘𝑀)) ↑𝑚 𝑆)(𝑓 finSupp
(0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀) ∧ ∃𝑥 ∈ 𝑆 (𝑓‘𝑥) ≠
(0g‘(Scalar‘𝑀)))) |
| 52 | 1, 12, 2, 27, 3 | islindeps 42242 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫
(Base‘𝑀)) →
(𝑆 linDepS 𝑀 ↔ ∃𝑓 ∈
((Base‘(Scalar‘𝑀)) ↑𝑚 𝑆)(𝑓 finSupp
(0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀) ∧ ∃𝑥 ∈ 𝑆 (𝑓‘𝑥) ≠
(0g‘(Scalar‘𝑀))))) |
| 53 | 10, 11, 52 | syl2anc 693 |
. 2
⊢ (((𝑀 ∈ LMod ∧ 1 <
(#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → (𝑆 linDepS 𝑀 ↔ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚
𝑆)(𝑓 finSupp
(0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀) ∧ ∃𝑥 ∈ 𝑆 (𝑓‘𝑥) ≠
(0g‘(Scalar‘𝑀))))) |
| 54 | 51, 53 | mpbird 247 |
1
⊢ (((𝑀 ∈ LMod ∧ 1 <
(#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → 𝑆 linDepS 𝑀) |