Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  el0ldep Structured version   Visualization version   GIF version

Theorem el0ldep 42255
Description: A set containing the zero element of a module is always linearly dependent, if the underlying ring has at least two elements. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Assertion
Ref Expression
el0ldep (((𝑀 ∈ LMod ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → 𝑆 linDepS 𝑀)

Proof of Theorem el0ldep
Dummy variables 𝑥 𝑓 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2622 . . . . 5 (Scalar‘𝑀) = (Scalar‘𝑀)
3 eqid 2622 . . . . 5 (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀))
4 eqid 2622 . . . . 5 (1r‘(Scalar‘𝑀)) = (1r‘(Scalar‘𝑀))
5 eqeq1 2626 . . . . . . 7 (𝑠 = 𝑦 → (𝑠 = (0g𝑀) ↔ 𝑦 = (0g𝑀)))
65ifbid 4108 . . . . . 6 (𝑠 = 𝑦 → if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) = if(𝑦 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))
76cbvmptv 4750 . . . . 5 (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) = (𝑦𝑆 ↦ if(𝑦 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))
81, 2, 3, 4, 7mptcfsupp 42161 . . . 4 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)))
983adant1r 1319 . . 3 (((𝑀 ∈ LMod ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)))
10 simp1l 1085 . . . 4 (((𝑀 ∈ LMod ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → 𝑀 ∈ LMod)
11 simp2 1062 . . . 4 (((𝑀 ∈ LMod ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → 𝑆 ∈ 𝒫 (Base‘𝑀))
12 eqid 2622 . . . . 5 (0g𝑀) = (0g𝑀)
13 eqid 2622 . . . . 5 (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) = (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))
141, 2, 3, 4, 12, 13linc0scn0 42212 . . . 4 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) → ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g𝑀))
1510, 11, 14syl2anc 693 . . 3 (((𝑀 ∈ LMod ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g𝑀))
16 simp3 1063 . . . 4 (((𝑀 ∈ LMod ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (0g𝑀) ∈ 𝑆)
17 fveq2 6191 . . . . . 6 (𝑥 = (0g𝑀) → ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥) = ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘(0g𝑀)))
1817neeq1d 2853 . . . . 5 (𝑥 = (0g𝑀) → (((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥) ≠ (0g‘(Scalar‘𝑀)) ↔ ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘(0g𝑀)) ≠ (0g‘(Scalar‘𝑀))))
1918adantl 482 . . . 4 ((((𝑀 ∈ LMod ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) ∧ 𝑥 = (0g𝑀)) → (((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥) ≠ (0g‘(Scalar‘𝑀)) ↔ ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘(0g𝑀)) ≠ (0g‘(Scalar‘𝑀))))
20 fvexd 6203 . . . . . 6 (((𝑀 ∈ LMod ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (1r‘(Scalar‘𝑀)) ∈ V)
21 iftrue 4092 . . . . . . 7 (𝑠 = (0g𝑀) → if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) = (1r‘(Scalar‘𝑀)))
2221, 13fvmptg 6280 . . . . . 6 (((0g𝑀) ∈ 𝑆 ∧ (1r‘(Scalar‘𝑀)) ∈ V) → ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘(0g𝑀)) = (1r‘(Scalar‘𝑀)))
2316, 20, 22syl2anc 693 . . . . 5 (((𝑀 ∈ LMod ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘(0g𝑀)) = (1r‘(Scalar‘𝑀)))
242lmodring 18871 . . . . . . . 8 (𝑀 ∈ LMod → (Scalar‘𝑀) ∈ Ring)
2524anim1i 592 . . . . . . 7 ((𝑀 ∈ LMod ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) → ((Scalar‘𝑀) ∈ Ring ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))))
26253ad2ant1 1082 . . . . . 6 (((𝑀 ∈ LMod ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → ((Scalar‘𝑀) ∈ Ring ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))))
27 eqid 2622 . . . . . . 7 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
2827, 4, 3ring1ne0 18591 . . . . . 6 (((Scalar‘𝑀) ∈ Ring ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) → (1r‘(Scalar‘𝑀)) ≠ (0g‘(Scalar‘𝑀)))
2926, 28syl 17 . . . . 5 (((𝑀 ∈ LMod ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (1r‘(Scalar‘𝑀)) ≠ (0g‘(Scalar‘𝑀)))
3023, 29eqnetrd 2861 . . . 4 (((𝑀 ∈ LMod ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘(0g𝑀)) ≠ (0g‘(Scalar‘𝑀)))
3116, 19, 30rspcedvd 3317 . . 3 (((𝑀 ∈ LMod ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → ∃𝑥𝑆 ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥) ≠ (0g‘(Scalar‘𝑀)))
322, 27, 4lmod1cl 18890 . . . . . . . . . 10 (𝑀 ∈ LMod → (1r‘(Scalar‘𝑀)) ∈ (Base‘(Scalar‘𝑀)))
332, 27, 3lmod0cl 18889 . . . . . . . . . 10 (𝑀 ∈ LMod → (0g‘(Scalar‘𝑀)) ∈ (Base‘(Scalar‘𝑀)))
3432, 33ifcld 4131 . . . . . . . . 9 (𝑀 ∈ LMod → if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) ∈ (Base‘(Scalar‘𝑀)))
3534adantr 481 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) → if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) ∈ (Base‘(Scalar‘𝑀)))
36353ad2ant1 1082 . . . . . . 7 (((𝑀 ∈ LMod ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) ∈ (Base‘(Scalar‘𝑀)))
3736adantr 481 . . . . . 6 ((((𝑀 ∈ LMod ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) ∧ 𝑠𝑆) → if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) ∈ (Base‘(Scalar‘𝑀)))
3837, 13fmptd 6385 . . . . 5 (((𝑀 ∈ LMod ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))):𝑆⟶(Base‘(Scalar‘𝑀)))
39 fvexd 6203 . . . . . 6 (((𝑀 ∈ LMod ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (Base‘(Scalar‘𝑀)) ∈ V)
4039, 11elmapd 7871 . . . . 5 (((𝑀 ∈ LMod ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑆) ↔ (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))):𝑆⟶(Base‘(Scalar‘𝑀))))
4138, 40mpbird 247 . . . 4 (((𝑀 ∈ LMod ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑆))
42 breq1 4656 . . . . . 6 (𝑓 = (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → (𝑓 finSupp (0g‘(Scalar‘𝑀)) ↔ (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀))))
43 oveq1 6657 . . . . . . 7 (𝑓 = (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → (𝑓( linC ‘𝑀)𝑆) = ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆))
4443eqeq1d 2624 . . . . . 6 (𝑓 = (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → ((𝑓( linC ‘𝑀)𝑆) = (0g𝑀) ↔ ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g𝑀)))
45 fveq1 6190 . . . . . . . 8 (𝑓 = (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → (𝑓𝑥) = ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥))
4645neeq1d 2853 . . . . . . 7 (𝑓 = (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → ((𝑓𝑥) ≠ (0g‘(Scalar‘𝑀)) ↔ ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥) ≠ (0g‘(Scalar‘𝑀))))
4746rexbidv 3052 . . . . . 6 (𝑓 = (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → (∃𝑥𝑆 (𝑓𝑥) ≠ (0g‘(Scalar‘𝑀)) ↔ ∃𝑥𝑆 ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥) ≠ (0g‘(Scalar‘𝑀))))
4842, 44, 473anbi123d 1399 . . . . 5 (𝑓 = (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀) ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ (0g‘(Scalar‘𝑀))) ↔ ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g𝑀) ∧ ∃𝑥𝑆 ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥) ≠ (0g‘(Scalar‘𝑀)))))
4948adantl 482 . . . 4 ((((𝑀 ∈ LMod ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) ∧ 𝑓 = (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))) → ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀) ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ (0g‘(Scalar‘𝑀))) ↔ ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g𝑀) ∧ ∃𝑥𝑆 ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥) ≠ (0g‘(Scalar‘𝑀)))))
5041, 49rspcedv 3313 . . 3 (((𝑀 ∈ LMod ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g𝑀) ∧ ∃𝑥𝑆 ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥) ≠ (0g‘(Scalar‘𝑀))) → ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑆)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀) ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ (0g‘(Scalar‘𝑀)))))
519, 15, 31, 50mp3and 1427 . 2 (((𝑀 ∈ LMod ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑆)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀) ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ (0g‘(Scalar‘𝑀))))
521, 12, 2, 27, 3islindeps 42242 . . 3 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) → (𝑆 linDepS 𝑀 ↔ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑆)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀) ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ (0g‘(Scalar‘𝑀)))))
5310, 11, 52syl2anc 693 . 2 (((𝑀 ∈ LMod ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (𝑆 linDepS 𝑀 ↔ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑆)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀) ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ (0g‘(Scalar‘𝑀)))))
5451, 53mpbird 247 1 (((𝑀 ∈ LMod ∧ 1 < (#‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → 𝑆 linDepS 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  Vcvv 3200  ifcif 4086  𝒫 cpw 4158   class class class wbr 4653  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857   finSupp cfsupp 8275  1c1 9937   < clt 10074  #chash 13117  Basecbs 15857  Scalarcsca 15944  0gc0g 16100  1rcur 18501  Ringcrg 18547  LModclmod 18863   linC clinc 42193   linDepS clindeps 42230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-linc 42195  df-lininds 42231  df-lindeps 42233
This theorem is referenced by:  el0ldepsnzr  42256
  Copyright terms: Public domain W3C validator