MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul02lem1 Structured version   Visualization version   Unicode version

Theorem mul02lem1 10212
Description: Lemma for mul02 10214. If any real does not produce  0 when multiplied by  0, then any complex is equal to double itself. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mul02lem1  |-  ( ( ( A  e.  RR  /\  ( 0  x.  A
)  =/=  0 )  /\  B  e.  CC )  ->  B  =  ( B  +  B ) )

Proof of Theorem mul02lem1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 0re 10040 . . . . 5  |-  0  e.  RR
2 remulcl 10021 . . . . 5  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  x.  A
)  e.  RR )
31, 2mpan 706 . . . 4  |-  ( A  e.  RR  ->  (
0  x.  A )  e.  RR )
4 ax-rrecex 10008 . . . 4  |-  ( ( ( 0  x.  A
)  e.  RR  /\  ( 0  x.  A
)  =/=  0 )  ->  E. y  e.  RR  ( ( 0  x.  A )  x.  y
)  =  1 )
53, 4sylan 488 . . 3  |-  ( ( A  e.  RR  /\  ( 0  x.  A
)  =/=  0 )  ->  E. y  e.  RR  ( ( 0  x.  A )  x.  y
)  =  1 )
65adantr 481 . 2  |-  ( ( ( A  e.  RR  /\  ( 0  x.  A
)  =/=  0 )  /\  B  e.  CC )  ->  E. y  e.  RR  ( ( 0  x.  A )  x.  y
)  =  1 )
7 00id 10211 . . . . 5  |-  ( 0  +  0 )  =  0
87oveq2i 6661 . . . 4  |-  ( ( ( y  x.  A
)  x.  B )  x.  ( 0  +  0 ) )  =  ( ( ( y  x.  A )  x.  B )  x.  0 )
98eqcomi 2631 . . 3  |-  ( ( ( y  x.  A
)  x.  B )  x.  0 )  =  ( ( ( y  x.  A )  x.  B )  x.  (
0  +  0 ) )
10 simprl 794 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  ( 0  x.  A )  =/=  0 )  /\  B  e.  CC )  /\  (
y  e.  RR  /\  ( ( 0  x.  A )  x.  y
)  =  1 ) )  ->  y  e.  RR )
1110recnd 10068 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  ( 0  x.  A )  =/=  0 )  /\  B  e.  CC )  /\  (
y  e.  RR  /\  ( ( 0  x.  A )  x.  y
)  =  1 ) )  ->  y  e.  CC )
12 simplll 798 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  ( 0  x.  A )  =/=  0 )  /\  B  e.  CC )  /\  (
y  e.  RR  /\  ( ( 0  x.  A )  x.  y
)  =  1 ) )  ->  A  e.  RR )
1312recnd 10068 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  ( 0  x.  A )  =/=  0 )  /\  B  e.  CC )  /\  (
y  e.  RR  /\  ( ( 0  x.  A )  x.  y
)  =  1 ) )  ->  A  e.  CC )
1411, 13mulcld 10060 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  ( 0  x.  A )  =/=  0 )  /\  B  e.  CC )  /\  (
y  e.  RR  /\  ( ( 0  x.  A )  x.  y
)  =  1 ) )  ->  ( y  x.  A )  e.  CC )
15 simplr 792 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  ( 0  x.  A )  =/=  0 )  /\  B  e.  CC )  /\  (
y  e.  RR  /\  ( ( 0  x.  A )  x.  y
)  =  1 ) )  ->  B  e.  CC )
16 0cn 10032 . . . . . 6  |-  0  e.  CC
17 mul32 10203 . . . . . 6  |-  ( ( ( y  x.  A
)  e.  CC  /\  B  e.  CC  /\  0  e.  CC )  ->  (
( ( y  x.  A )  x.  B
)  x.  0 )  =  ( ( ( y  x.  A )  x.  0 )  x.  B ) )
1816, 17mp3an3 1413 . . . . 5  |-  ( ( ( y  x.  A
)  e.  CC  /\  B  e.  CC )  ->  ( ( ( y  x.  A )  x.  B )  x.  0 )  =  ( ( ( y  x.  A
)  x.  0 )  x.  B ) )
1914, 15, 18syl2anc 693 . . . 4  |-  ( ( ( ( A  e.  RR  /\  ( 0  x.  A )  =/=  0 )  /\  B  e.  CC )  /\  (
y  e.  RR  /\  ( ( 0  x.  A )  x.  y
)  =  1 ) )  ->  ( (
( y  x.  A
)  x.  B )  x.  0 )  =  ( ( ( y  x.  A )  x.  0 )  x.  B
) )
20 mul31 10204 . . . . . . . . 9  |-  ( ( y  e.  CC  /\  A  e.  CC  /\  0  e.  CC )  ->  (
( y  x.  A
)  x.  0 )  =  ( ( 0  x.  A )  x.  y ) )
2116, 20mp3an3 1413 . . . . . . . 8  |-  ( ( y  e.  CC  /\  A  e.  CC )  ->  ( ( y  x.  A )  x.  0 )  =  ( ( 0  x.  A )  x.  y ) )
2211, 13, 21syl2anc 693 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  ( 0  x.  A )  =/=  0 )  /\  B  e.  CC )  /\  (
y  e.  RR  /\  ( ( 0  x.  A )  x.  y
)  =  1 ) )  ->  ( (
y  x.  A )  x.  0 )  =  ( ( 0  x.  A )  x.  y
) )
23 simprr 796 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  ( 0  x.  A )  =/=  0 )  /\  B  e.  CC )  /\  (
y  e.  RR  /\  ( ( 0  x.  A )  x.  y
)  =  1 ) )  ->  ( (
0  x.  A )  x.  y )  =  1 )
2422, 23eqtrd 2656 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  ( 0  x.  A )  =/=  0 )  /\  B  e.  CC )  /\  (
y  e.  RR  /\  ( ( 0  x.  A )  x.  y
)  =  1 ) )  ->  ( (
y  x.  A )  x.  0 )  =  1 )
2524oveq1d 6665 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  ( 0  x.  A )  =/=  0 )  /\  B  e.  CC )  /\  (
y  e.  RR  /\  ( ( 0  x.  A )  x.  y
)  =  1 ) )  ->  ( (
( y  x.  A
)  x.  0 )  x.  B )  =  ( 1  x.  B
) )
26 mulid2 10038 . . . . . 6  |-  ( B  e.  CC  ->  (
1  x.  B )  =  B )
2726ad2antlr 763 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  ( 0  x.  A )  =/=  0 )  /\  B  e.  CC )  /\  (
y  e.  RR  /\  ( ( 0  x.  A )  x.  y
)  =  1 ) )  ->  ( 1  x.  B )  =  B )
2825, 27eqtrd 2656 . . . 4  |-  ( ( ( ( A  e.  RR  /\  ( 0  x.  A )  =/=  0 )  /\  B  e.  CC )  /\  (
y  e.  RR  /\  ( ( 0  x.  A )  x.  y
)  =  1 ) )  ->  ( (
( y  x.  A
)  x.  0 )  x.  B )  =  B )
2919, 28eqtrd 2656 . . 3  |-  ( ( ( ( A  e.  RR  /\  ( 0  x.  A )  =/=  0 )  /\  B  e.  CC )  /\  (
y  e.  RR  /\  ( ( 0  x.  A )  x.  y
)  =  1 ) )  ->  ( (
( y  x.  A
)  x.  B )  x.  0 )  =  B )
3014, 15mulcld 10060 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  ( 0  x.  A )  =/=  0 )  /\  B  e.  CC )  /\  (
y  e.  RR  /\  ( ( 0  x.  A )  x.  y
)  =  1 ) )  ->  ( (
y  x.  A )  x.  B )  e.  CC )
31 adddi 10025 . . . . . 6  |-  ( ( ( ( y  x.  A )  x.  B
)  e.  CC  /\  0  e.  CC  /\  0  e.  CC )  ->  (
( ( y  x.  A )  x.  B
)  x.  ( 0  +  0 ) )  =  ( ( ( ( y  x.  A
)  x.  B )  x.  0 )  +  ( ( ( y  x.  A )  x.  B )  x.  0 ) ) )
3216, 16, 31mp3an23 1416 . . . . 5  |-  ( ( ( y  x.  A
)  x.  B )  e.  CC  ->  (
( ( y  x.  A )  x.  B
)  x.  ( 0  +  0 ) )  =  ( ( ( ( y  x.  A
)  x.  B )  x.  0 )  +  ( ( ( y  x.  A )  x.  B )  x.  0 ) ) )
3330, 32syl 17 . . . 4  |-  ( ( ( ( A  e.  RR  /\  ( 0  x.  A )  =/=  0 )  /\  B  e.  CC )  /\  (
y  e.  RR  /\  ( ( 0  x.  A )  x.  y
)  =  1 ) )  ->  ( (
( y  x.  A
)  x.  B )  x.  ( 0  +  0 ) )  =  ( ( ( ( y  x.  A )  x.  B )  x.  0 )  +  ( ( ( y  x.  A )  x.  B
)  x.  0 ) ) )
3429, 29oveq12d 6668 . . . 4  |-  ( ( ( ( A  e.  RR  /\  ( 0  x.  A )  =/=  0 )  /\  B  e.  CC )  /\  (
y  e.  RR  /\  ( ( 0  x.  A )  x.  y
)  =  1 ) )  ->  ( (
( ( y  x.  A )  x.  B
)  x.  0 )  +  ( ( ( y  x.  A )  x.  B )  x.  0 ) )  =  ( B  +  B
) )
3533, 34eqtrd 2656 . . 3  |-  ( ( ( ( A  e.  RR  /\  ( 0  x.  A )  =/=  0 )  /\  B  e.  CC )  /\  (
y  e.  RR  /\  ( ( 0  x.  A )  x.  y
)  =  1 ) )  ->  ( (
( y  x.  A
)  x.  B )  x.  ( 0  +  0 ) )  =  ( B  +  B
) )
369, 29, 353eqtr3a 2680 . 2  |-  ( ( ( ( A  e.  RR  /\  ( 0  x.  A )  =/=  0 )  /\  B  e.  CC )  /\  (
y  e.  RR  /\  ( ( 0  x.  A )  x.  y
)  =  1 ) )  ->  B  =  ( B  +  B
) )
376, 36rexlimddv 3035 1  |-  ( ( ( A  e.  RR  /\  ( 0  x.  A
)  =/=  0 )  /\  B  e.  CC )  ->  B  =  ( B  +  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079
This theorem is referenced by:  mul02lem2  10213
  Copyright terms: Public domain W3C validator