| Step | Hyp | Ref
| Expression |
| 1 | | reex 10027 |
. . . . 5
⊢ ℝ
∈ V |
| 2 | 1 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 = 0) → ℝ ∈
V) |
| 3 | | i1fmulc.2 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ dom
∫1) |
| 4 | | i1ff 23443 |
. . . . . 6
⊢ (𝐹 ∈ dom ∫1
→ 𝐹:ℝ⟶ℝ) |
| 5 | 3, 4 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| 6 | 5 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 = 0) → 𝐹:ℝ⟶ℝ) |
| 7 | | i1fmulc.3 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 8 | 7 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 = 0) → 𝐴 ∈ ℝ) |
| 9 | | 0red 10041 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 = 0) → 0 ∈
ℝ) |
| 10 | | simplr 792 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝑥 ∈ ℝ) → 𝐴 = 0) |
| 11 | 10 | oveq1d 6665 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝑥 ∈ ℝ) → (𝐴 · 𝑥) = (0 · 𝑥)) |
| 12 | | mul02lem2 10213 |
. . . . . 6
⊢ (𝑥 ∈ ℝ → (0
· 𝑥) =
0) |
| 13 | 12 | adantl 482 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝑥 ∈ ℝ) → (0 · 𝑥) = 0) |
| 14 | 11, 13 | eqtrd 2656 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 = 0) ∧ 𝑥 ∈ ℝ) → (𝐴 · 𝑥) = 0) |
| 15 | 2, 6, 8, 9, 14 | caofid2 6928 |
. . 3
⊢ ((𝜑 ∧ 𝐴 = 0) → ((ℝ × {𝐴}) ∘𝑓
· 𝐹) = (ℝ
× {0})) |
| 16 | | i1f0 23454 |
. . 3
⊢ (ℝ
× {0}) ∈ dom ∫1 |
| 17 | 15, 16 | syl6eqel 2709 |
. 2
⊢ ((𝜑 ∧ 𝐴 = 0) → ((ℝ × {𝐴}) ∘𝑓
· 𝐹) ∈ dom
∫1) |
| 18 | | remulcl 10021 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) |
| 19 | 18 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ) |
| 20 | | fconst6g 6094 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → (ℝ
× {𝐴}):ℝ⟶ℝ) |
| 21 | 7, 20 | syl 17 |
. . . . 5
⊢ (𝜑 → (ℝ × {𝐴}):ℝ⟶ℝ) |
| 22 | 1 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ∈
V) |
| 23 | | inidm 3822 |
. . . . 5
⊢ (ℝ
∩ ℝ) = ℝ |
| 24 | 19, 21, 5, 22, 22, 23 | off 6912 |
. . . 4
⊢ (𝜑 → ((ℝ × {𝐴}) ∘𝑓
· 𝐹):ℝ⟶ℝ) |
| 25 | 24 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((ℝ × {𝐴}) ∘𝑓
· 𝐹):ℝ⟶ℝ) |
| 26 | | i1frn 23444 |
. . . . . . 7
⊢ (𝐹 ∈ dom ∫1
→ ran 𝐹 ∈
Fin) |
| 27 | 3, 26 | syl 17 |
. . . . . 6
⊢ (𝜑 → ran 𝐹 ∈ Fin) |
| 28 | | ovex 6678 |
. . . . . . . 8
⊢ (𝐴 · 𝑦) ∈ V |
| 29 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) = (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) |
| 30 | 28, 29 | fnmpti 6022 |
. . . . . . 7
⊢ (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) Fn ran 𝐹 |
| 31 | | dffn4 6121 |
. . . . . . 7
⊢ ((𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) Fn ran 𝐹 ↔ (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)):ran 𝐹–onto→ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦))) |
| 32 | 30, 31 | mpbi 220 |
. . . . . 6
⊢ (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)):ran 𝐹–onto→ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) |
| 33 | | fofi 8252 |
. . . . . 6
⊢ ((ran
𝐹 ∈ Fin ∧ (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)):ran 𝐹–onto→ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦))) → ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) ∈ Fin) |
| 34 | 27, 32, 33 | sylancl 694 |
. . . . 5
⊢ (𝜑 → ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) ∈ Fin) |
| 35 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ ran 𝐹 → 𝑤 ∈ ran 𝐹) |
| 36 | | elsni 4194 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) |
| 37 | 36 | oveq1d 6665 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {𝐴} → (𝑥 · 𝑤) = (𝐴 · 𝑤)) |
| 38 | | oveq2 6658 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑤 → (𝐴 · 𝑦) = (𝐴 · 𝑤)) |
| 39 | 38 | eqeq2d 2632 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑤 → ((𝑥 · 𝑤) = (𝐴 · 𝑦) ↔ (𝑥 · 𝑤) = (𝐴 · 𝑤))) |
| 40 | 39 | rspcev 3309 |
. . . . . . . . . . 11
⊢ ((𝑤 ∈ ran 𝐹 ∧ (𝑥 · 𝑤) = (𝐴 · 𝑤)) → ∃𝑦 ∈ ran 𝐹(𝑥 · 𝑤) = (𝐴 · 𝑦)) |
| 41 | 35, 37, 40 | syl2anr 495 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ {𝐴} ∧ 𝑤 ∈ ran 𝐹) → ∃𝑦 ∈ ran 𝐹(𝑥 · 𝑤) = (𝐴 · 𝑦)) |
| 42 | | ovex 6678 |
. . . . . . . . . . 11
⊢ (𝑥 · 𝑤) ∈ V |
| 43 | | eqeq1 2626 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑥 · 𝑤) → (𝑧 = (𝐴 · 𝑦) ↔ (𝑥 · 𝑤) = (𝐴 · 𝑦))) |
| 44 | 43 | rexbidv 3052 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑥 · 𝑤) → (∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦) ↔ ∃𝑦 ∈ ran 𝐹(𝑥 · 𝑤) = (𝐴 · 𝑦))) |
| 45 | 42, 44 | elab 3350 |
. . . . . . . . . 10
⊢ ((𝑥 · 𝑤) ∈ {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)} ↔ ∃𝑦 ∈ ran 𝐹(𝑥 · 𝑤) = (𝐴 · 𝑦)) |
| 46 | 41, 45 | sylibr 224 |
. . . . . . . . 9
⊢ ((𝑥 ∈ {𝐴} ∧ 𝑤 ∈ ran 𝐹) → (𝑥 · 𝑤) ∈ {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)}) |
| 47 | 46 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ {𝐴} ∧ 𝑤 ∈ ran 𝐹)) → (𝑥 · 𝑤) ∈ {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)}) |
| 48 | | fconstg 6092 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ → (ℝ
× {𝐴}):ℝ⟶{𝐴}) |
| 49 | 7, 48 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (ℝ × {𝐴}):ℝ⟶{𝐴}) |
| 50 | | ffn 6045 |
. . . . . . . . . 10
⊢ (𝐹:ℝ⟶ℝ →
𝐹 Fn
ℝ) |
| 51 | 5, 50 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 Fn ℝ) |
| 52 | | dffn3 6054 |
. . . . . . . . 9
⊢ (𝐹 Fn ℝ ↔ 𝐹:ℝ⟶ran 𝐹) |
| 53 | 51, 52 | sylib 208 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:ℝ⟶ran 𝐹) |
| 54 | 47, 49, 53, 22, 22, 23 | off 6912 |
. . . . . . 7
⊢ (𝜑 → ((ℝ × {𝐴}) ∘𝑓
· 𝐹):ℝ⟶{𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)}) |
| 55 | | frn 6053 |
. . . . . . 7
⊢
(((ℝ × {𝐴}) ∘𝑓 ·
𝐹):ℝ⟶{𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)} → ran ((ℝ × {𝐴}) ∘𝑓
· 𝐹) ⊆ {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)}) |
| 56 | 54, 55 | syl 17 |
. . . . . 6
⊢ (𝜑 → ran ((ℝ ×
{𝐴})
∘𝑓 · 𝐹) ⊆ {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)}) |
| 57 | 29 | rnmpt 5371 |
. . . . . 6
⊢ ran
(𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) = {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)} |
| 58 | 56, 57 | syl6sseqr 3652 |
. . . . 5
⊢ (𝜑 → ran ((ℝ ×
{𝐴})
∘𝑓 · 𝐹) ⊆ ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦))) |
| 59 | | ssfi 8180 |
. . . . 5
⊢ ((ran
(𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) ∈ Fin ∧ ran ((ℝ ×
{𝐴})
∘𝑓 · 𝐹) ⊆ ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦))) → ran ((ℝ × {𝐴}) ∘𝑓
· 𝐹) ∈
Fin) |
| 60 | 34, 58, 59 | syl2anc 693 |
. . . 4
⊢ (𝜑 → ran ((ℝ ×
{𝐴})
∘𝑓 · 𝐹) ∈ Fin) |
| 61 | 60 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ran ((ℝ × {𝐴}) ∘𝑓
· 𝐹) ∈
Fin) |
| 62 | | frn 6053 |
. . . . . . . . 9
⊢
(((ℝ × {𝐴}) ∘𝑓 ·
𝐹):ℝ⟶ℝ
→ ran ((ℝ × {𝐴}) ∘𝑓 ·
𝐹) ⊆
ℝ) |
| 63 | 24, 62 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ran ((ℝ ×
{𝐴})
∘𝑓 · 𝐹) ⊆ ℝ) |
| 64 | 63 | ssdifssd 3748 |
. . . . . . 7
⊢ (𝜑 → (ran ((ℝ ×
{𝐴})
∘𝑓 · 𝐹) ∖ {0}) ⊆
ℝ) |
| 65 | 64 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → (ran ((ℝ ×
{𝐴})
∘𝑓 · 𝐹) ∖ {0}) ⊆
ℝ) |
| 66 | 65 | sselda 3603 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓
· 𝐹) ∖ {0}))
→ 𝑦 ∈
ℝ) |
| 67 | 3, 7 | i1fmulclem 23469 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → (◡((ℝ × {𝐴}) ∘𝑓 ·
𝐹) “ {𝑦}) = (◡𝐹 “ {(𝑦 / 𝐴)})) |
| 68 | 66, 67 | syldan 487 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓
· 𝐹) ∖ {0}))
→ (◡((ℝ × {𝐴}) ∘𝑓
· 𝐹) “ {𝑦}) = (◡𝐹 “ {(𝑦 / 𝐴)})) |
| 69 | | i1fima 23445 |
. . . . . 6
⊢ (𝐹 ∈ dom ∫1
→ (◡𝐹 “ {(𝑦 / 𝐴)}) ∈ dom vol) |
| 70 | 3, 69 | syl 17 |
. . . . 5
⊢ (𝜑 → (◡𝐹 “ {(𝑦 / 𝐴)}) ∈ dom vol) |
| 71 | 70 | ad2antrr 762 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓
· 𝐹) ∖ {0}))
→ (◡𝐹 “ {(𝑦 / 𝐴)}) ∈ dom vol) |
| 72 | 68, 71 | eqeltrd 2701 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓
· 𝐹) ∖ {0}))
→ (◡((ℝ × {𝐴}) ∘𝑓
· 𝐹) “ {𝑦}) ∈ dom
vol) |
| 73 | 68 | fveq2d 6195 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓
· 𝐹) ∖ {0}))
→ (vol‘(◡((ℝ ×
{𝐴})
∘𝑓 · 𝐹) “ {𝑦})) = (vol‘(◡𝐹 “ {(𝑦 / 𝐴)}))) |
| 74 | 3 | ad2antrr 762 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓
· 𝐹) ∖ {0}))
→ 𝐹 ∈ dom
∫1) |
| 75 | 7 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓
· 𝐹) ∖ {0}))
→ 𝐴 ∈
ℝ) |
| 76 | | simplr 792 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓
· 𝐹) ∖ {0}))
→ 𝐴 ≠
0) |
| 77 | 66, 75, 76 | redivcld 10853 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓
· 𝐹) ∖ {0}))
→ (𝑦 / 𝐴) ∈
ℝ) |
| 78 | 66 | recnd 10068 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓
· 𝐹) ∖ {0}))
→ 𝑦 ∈
ℂ) |
| 79 | 75 | recnd 10068 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓
· 𝐹) ∖ {0}))
→ 𝐴 ∈
ℂ) |
| 80 | | eldifsni 4320 |
. . . . . . . 8
⊢ (𝑦 ∈ (ran ((ℝ ×
{𝐴})
∘𝑓 · 𝐹) ∖ {0}) → 𝑦 ≠ 0) |
| 81 | 80 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓
· 𝐹) ∖ {0}))
→ 𝑦 ≠
0) |
| 82 | 78, 79, 81, 76 | divne0d 10817 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓
· 𝐹) ∖ {0}))
→ (𝑦 / 𝐴) ≠ 0) |
| 83 | | eldifsn 4317 |
. . . . . 6
⊢ ((𝑦 / 𝐴) ∈ (ℝ ∖ {0}) ↔
((𝑦 / 𝐴) ∈ ℝ ∧ (𝑦 / 𝐴) ≠ 0)) |
| 84 | 77, 82, 83 | sylanbrc 698 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓
· 𝐹) ∖ {0}))
→ (𝑦 / 𝐴) ∈ (ℝ ∖
{0})) |
| 85 | | i1fima2sn 23447 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ (𝑦 / 𝐴) ∈ (ℝ ∖ {0}))
→ (vol‘(◡𝐹 “ {(𝑦 / 𝐴)})) ∈ ℝ) |
| 86 | 74, 84, 85 | syl2anc 693 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓
· 𝐹) ∖ {0}))
→ (vol‘(◡𝐹 “ {(𝑦 / 𝐴)})) ∈ ℝ) |
| 87 | 73, 86 | eqeltrd 2701 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓
· 𝐹) ∖ {0}))
→ (vol‘(◡((ℝ ×
{𝐴})
∘𝑓 · 𝐹) “ {𝑦})) ∈ ℝ) |
| 88 | 25, 61, 72, 87 | i1fd 23448 |
. 2
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → ((ℝ × {𝐴}) ∘𝑓
· 𝐹) ∈ dom
∫1) |
| 89 | 17, 88 | pm2.61dane 2881 |
1
⊢ (𝜑 → ((ℝ × {𝐴}) ∘𝑓
· 𝐹) ∈ dom
∫1) |