Proof of Theorem noetalem4
Step | Hyp | Ref
| Expression |
1 | | noetalem.1 |
. . . . . . 7
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2𝑜〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
2 | 1 | nosupno 31849 |
. . . . . 6
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → 𝑆 ∈ No ) |
3 | | bdayval 31801 |
. . . . . 6
⊢ (𝑆 ∈
No → ( bday ‘𝑆) = dom 𝑆) |
4 | 2, 3 | syl 17 |
. . . . 5
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → ( bday ‘𝑆) = dom 𝑆) |
5 | 1 | nosupbday 31851 |
. . . . 5
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → ( bday ‘𝑆) ⊆ suc ∪
( bday “ 𝐴)) |
6 | 4, 5 | eqsstr3d 3640 |
. . . 4
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → dom 𝑆 ⊆ suc
∪ ( bday “ 𝐴)) |
7 | 6 | adantr 481 |
. . 3
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) → dom 𝑆 ⊆ suc ∪
( bday “ 𝐴)) |
8 | | unss1 3782 |
. . 3
⊢ (dom
𝑆 ⊆ suc ∪ ( bday “ 𝐴) → (dom 𝑆 ∪ suc ∪
( bday “ 𝐵)) ⊆ (suc ∪
( bday “ 𝐴) ∪ suc ∪
( bday “ 𝐵))) |
9 | 7, 8 | syl 17 |
. 2
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) → (dom 𝑆 ∪ suc ∪
( bday “ 𝐵)) ⊆ (suc ∪
( bday “ 𝐴) ∪ suc ∪
( bday “ 𝐵))) |
10 | | simpll 790 |
. . . . 5
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) → 𝐴 ⊆ No
) |
11 | | simplr 792 |
. . . . 5
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) → 𝐴 ∈ V) |
12 | | simprr 796 |
. . . . 5
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) → 𝐵 ∈ V) |
13 | | noetalem.2 |
. . . . . 6
⊢ 𝑍 = (𝑆 ∪ ((suc ∪
( bday “ 𝐵) ∖ dom 𝑆) ×
{1𝑜})) |
14 | 1, 13 | noetalem1 31863 |
. . . . 5
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝐵 ∈ V) →
𝑍 ∈ No ) |
15 | 10, 11, 12, 14 | syl3anc 1326 |
. . . 4
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) → 𝑍 ∈ No
) |
16 | | bdayval 31801 |
. . . 4
⊢ (𝑍 ∈
No → ( bday ‘𝑍) = dom 𝑍) |
17 | 15, 16 | syl 17 |
. . 3
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) → (
bday ‘𝑍) = dom
𝑍) |
18 | 13 | dmeqi 5325 |
. . . 4
⊢ dom 𝑍 = dom (𝑆 ∪ ((suc ∪
( bday “ 𝐵) ∖ dom 𝑆) ×
{1𝑜})) |
19 | | dmun 5331 |
. . . . 5
⊢ dom
(𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1𝑜})) = (dom
𝑆 ∪ dom ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) ×
{1𝑜})) |
20 | | 1on 7567 |
. . . . . . . . . 10
⊢
1𝑜 ∈ On |
21 | 20 | elexi 3213 |
. . . . . . . . 9
⊢
1𝑜 ∈ V |
22 | 21 | snnz 4309 |
. . . . . . . 8
⊢
{1𝑜} ≠ ∅ |
23 | | dmxp 5344 |
. . . . . . . 8
⊢
({1𝑜} ≠ ∅ → dom ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1𝑜}) = (suc
∪ ( bday “ 𝐵) ∖ dom 𝑆)) |
24 | 22, 23 | ax-mp 5 |
. . . . . . 7
⊢ dom ((suc
∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1𝑜}) = (suc
∪ ( bday “ 𝐵) ∖ dom 𝑆) |
25 | 24 | uneq2i 3764 |
. . . . . 6
⊢ (dom
𝑆 ∪ dom ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1𝑜})) = (dom
𝑆 ∪ (suc ∪ ( bday “ 𝐵) ∖ dom 𝑆)) |
26 | | undif2 4044 |
. . . . . 6
⊢ (dom
𝑆 ∪ (suc ∪ ( bday “ 𝐵) ∖ dom 𝑆)) = (dom 𝑆 ∪ suc ∪
( bday “ 𝐵)) |
27 | 25, 26 | eqtri 2644 |
. . . . 5
⊢ (dom
𝑆 ∪ dom ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1𝑜})) = (dom
𝑆 ∪ suc ∪ ( bday “ 𝐵)) |
28 | 19, 27 | eqtri 2644 |
. . . 4
⊢ dom
(𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1𝑜})) = (dom
𝑆 ∪ suc ∪ ( bday “ 𝐵)) |
29 | 18, 28 | eqtri 2644 |
. . 3
⊢ dom 𝑍 = (dom 𝑆 ∪ suc ∪
( bday “ 𝐵)) |
30 | 17, 29 | syl6eq 2672 |
. 2
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) → (
bday ‘𝑍) =
(dom 𝑆 ∪ suc ∪ ( bday “ 𝐵))) |
31 | | imaundi 5545 |
. . . . . . 7
⊢ ( bday “ (𝐴 ∪ 𝐵)) = (( bday
“ 𝐴) ∪ ( bday “ 𝐵)) |
32 | 31 | unieqi 4445 |
. . . . . 6
⊢ ∪ ( bday “ (𝐴 ∪ 𝐵)) = ∪ (( bday “ 𝐴) ∪ ( bday
“ 𝐵)) |
33 | | uniun 4456 |
. . . . . 6
⊢ ∪ (( bday “ 𝐴) ∪ (
bday “ 𝐵)) =
(∪ ( bday “
𝐴) ∪ ∪ ( bday “ 𝐵)) |
34 | 32, 33 | eqtri 2644 |
. . . . 5
⊢ ∪ ( bday “ (𝐴 ∪ 𝐵)) = (∪ ( bday “ 𝐴) ∪ ∪ ( bday “ 𝐵)) |
35 | | suceq 5790 |
. . . . 5
⊢ (∪ ( bday “ (𝐴 ∪ 𝐵)) = (∪ ( bday “ 𝐴) ∪ ∪ ( bday “ 𝐵)) → suc ∪
( bday “ (𝐴 ∪ 𝐵)) = suc (∪
( bday “ 𝐴) ∪ ∪ ( bday “ 𝐵))) |
36 | 34, 35 | ax-mp 5 |
. . . 4
⊢ suc ∪ ( bday “ (𝐴 ∪ 𝐵)) = suc (∪
( bday “ 𝐴) ∪ ∪ ( bday “ 𝐵)) |
37 | | imassrn 5477 |
. . . . . . 7
⊢ ( bday “ 𝐴) ⊆ ran bday
|
38 | | bdayfo 31828 |
. . . . . . . 8
⊢ bday : No –onto→On |
39 | | forn 6118 |
. . . . . . . 8
⊢ ( bday : No –onto→On → ran
bday = On) |
40 | 38, 39 | ax-mp 5 |
. . . . . . 7
⊢ ran bday = On |
41 | 37, 40 | sseqtri 3637 |
. . . . . 6
⊢ ( bday “ 𝐴) ⊆ On |
42 | | ssorduni 6985 |
. . . . . 6
⊢ (( bday “ 𝐴) ⊆ On → Ord ∪ ( bday “ 𝐴)) |
43 | 41, 42 | ax-mp 5 |
. . . . 5
⊢ Ord ∪ ( bday “ 𝐴) |
44 | | imassrn 5477 |
. . . . . . 7
⊢ ( bday “ 𝐵) ⊆ ran bday
|
45 | 44, 40 | sseqtri 3637 |
. . . . . 6
⊢ ( bday “ 𝐵) ⊆ On |
46 | | ssorduni 6985 |
. . . . . 6
⊢ (( bday “ 𝐵) ⊆ On → Ord ∪ ( bday “ 𝐵)) |
47 | 45, 46 | ax-mp 5 |
. . . . 5
⊢ Ord ∪ ( bday “ 𝐵) |
48 | | ordsucun 7025 |
. . . . 5
⊢ ((Ord
∪ ( bday “ 𝐴) ∧ Ord ∪ ( bday “ 𝐵)) → suc (∪ ( bday “ 𝐴) ∪ ∪ ( bday “ 𝐵)) = (suc ∪ ( bday “ 𝐴) ∪ suc ∪ ( bday “ 𝐵))) |
49 | 43, 47, 48 | mp2an 708 |
. . . 4
⊢ suc
(∪ ( bday “
𝐴) ∪ ∪ ( bday “ 𝐵)) = (suc ∪ ( bday “ 𝐴) ∪ suc ∪ ( bday “ 𝐵)) |
50 | 36, 49 | eqtri 2644 |
. . 3
⊢ suc ∪ ( bday “ (𝐴 ∪ 𝐵)) = (suc ∪
( bday “ 𝐴) ∪ suc ∪
( bday “ 𝐵)) |
51 | 50 | a1i 11 |
. 2
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) → suc ∪ ( bday “ (𝐴 ∪ 𝐵)) = (suc ∪
( bday “ 𝐴) ∪ suc ∪
( bday “ 𝐵))) |
52 | 9, 30, 51 | 3sstr4d 3648 |
1
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) → (
bday ‘𝑍)
⊆ suc ∪ ( bday
“ (𝐴 ∪ 𝐵))) |