Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bdayfo Structured version   Visualization version   GIF version

Theorem bdayfo 31828
Description: The birthday function maps the surreals onto the ordinals. Alling's axiom (B). (Shortened proof on 2012-Apr-14, SF). (Contributed by Scott Fenton, 11-Jun-2011.)
Assertion
Ref Expression
bdayfo bday : No onto→On

Proof of Theorem bdayfo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmexg 7097 . . . 4 (𝑥 No → dom 𝑥 ∈ V)
21rgen 2922 . . 3 𝑥 No dom 𝑥 ∈ V
3 df-bday 31798 . . . 4 bday = (𝑥 No ↦ dom 𝑥)
43mptfng 6019 . . 3 (∀𝑥 No dom 𝑥 ∈ V ↔ bday Fn No )
52, 4mpbi 220 . 2 bday Fn No
63rnmpt 5371 . . 3 ran bday = {𝑦 ∣ ∃𝑥 No 𝑦 = dom 𝑥}
7 noxp1o 31816 . . . . . 6 (𝑦 ∈ On → (𝑦 × {1𝑜}) ∈ No )
8 1on 7567 . . . . . . . . . 10 1𝑜 ∈ On
98elexi 3213 . . . . . . . . 9 1𝑜 ∈ V
109snnz 4309 . . . . . . . 8 {1𝑜} ≠ ∅
11 dmxp 5344 . . . . . . . 8 ({1𝑜} ≠ ∅ → dom (𝑦 × {1𝑜}) = 𝑦)
1210, 11ax-mp 5 . . . . . . 7 dom (𝑦 × {1𝑜}) = 𝑦
1312eqcomi 2631 . . . . . 6 𝑦 = dom (𝑦 × {1𝑜})
14 dmeq 5324 . . . . . . . 8 (𝑥 = (𝑦 × {1𝑜}) → dom 𝑥 = dom (𝑦 × {1𝑜}))
1514eqeq2d 2632 . . . . . . 7 (𝑥 = (𝑦 × {1𝑜}) → (𝑦 = dom 𝑥𝑦 = dom (𝑦 × {1𝑜})))
1615rspcev 3309 . . . . . 6 (((𝑦 × {1𝑜}) ∈ No 𝑦 = dom (𝑦 × {1𝑜})) → ∃𝑥 No 𝑦 = dom 𝑥)
177, 13, 16sylancl 694 . . . . 5 (𝑦 ∈ On → ∃𝑥 No 𝑦 = dom 𝑥)
18 nodmon 31803 . . . . . . 7 (𝑥 No → dom 𝑥 ∈ On)
19 eleq1a 2696 . . . . . . 7 (dom 𝑥 ∈ On → (𝑦 = dom 𝑥𝑦 ∈ On))
2018, 19syl 17 . . . . . 6 (𝑥 No → (𝑦 = dom 𝑥𝑦 ∈ On))
2120rexlimiv 3027 . . . . 5 (∃𝑥 No 𝑦 = dom 𝑥𝑦 ∈ On)
2217, 21impbii 199 . . . 4 (𝑦 ∈ On ↔ ∃𝑥 No 𝑦 = dom 𝑥)
2322abbi2i 2738 . . 3 On = {𝑦 ∣ ∃𝑥 No 𝑦 = dom 𝑥}
246, 23eqtr4i 2647 . 2 ran bday = On
25 df-fo 5894 . 2 ( bday : No onto→On ↔ ( bday Fn No ∧ ran bday = On))
265, 24, 25mpbir2an 955 1 bday : No onto→On
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  {cab 2608  wne 2794  wral 2912  wrex 2913  Vcvv 3200  c0 3915  {csn 4177   × cxp 5112  dom cdm 5114  ran crn 5115  Oncon0 5723   Fn wfn 5883  ontowfo 5886  1𝑜c1o 7553   No csur 31793   bday cbday 31795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1o 7560  df-no 31796  df-bday 31798
This theorem is referenced by:  nodense  31842  bdayimaon  31843  nosupno  31849  nosupbday  31851  noetalem3  31865  noetalem4  31866  bdayfun  31888  bdayfn  31889  bdaydm  31890  bdayrn  31891  bdayelon  31892  noprc  31895
  Copyright terms: Public domain W3C validator