Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosepssdm Structured version   Visualization version   Unicode version

Theorem nosepssdm 31836
Description: Given two non-equal surreals, their separator is less than or equal to the domain of one of them. Part of Lemma 2.1.1 of [Lipparini] p. 3. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nosepssdm  |-  ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  ->  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  C_  dom  A )
Distinct variable groups:    x, A    x, B

Proof of Theorem nosepssdm
StepHypRef Expression
1 nosepne 31831 . . . 4  |-  ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  ->  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =/=  ( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } ) )
21neneqd 2799 . . 3  |-  ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  ->  -.  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  ( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } ) )
3 nodmord 31806 . . . . . . . . 9  |-  ( A  e.  No  ->  Ord  dom 
A )
433ad2ant1 1082 . . . . . . . 8  |-  ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  ->  Ord  dom 
A )
5 ordn2lp 5743 . . . . . . . 8  |-  ( Ord 
dom  A  ->  -.  ( dom  A  e.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  /\  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) }  e.  dom  A ) )
64, 5syl 17 . . . . . . 7  |-  ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  ->  -.  ( dom  A  e.  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) }  /\  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  dom  A ) )
7 imnan 438 . . . . . . 7  |-  ( ( dom  A  e.  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) }  ->  -.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  dom  A )  <->  -.  ( dom  A  e.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  /\  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) }  e.  dom  A ) )
86, 7sylibr 224 . . . . . 6  |-  ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  ->  ( dom  A  e.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  ->  -.  |^|
{ x  e.  On  |  ( A `  x )  =/=  ( B `  x ) }  e.  dom  A ) )
98imp 445 . . . . 5  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  dom  A  e.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  ->  -.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  dom  A )
10 ndmfv 6218 . . . . 5  |-  ( -. 
|^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) }  e.  dom  A  -> 
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  (/) )
119, 10syl 17 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  dom  A  e.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  -> 
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  (/) )
12 nosepeq 31835 . . . . . 6  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  dom  A  e.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  -> 
( A `  dom  A )  =  ( B `
 dom  A )
)
13 simpl1 1064 . . . . . . . . . . 11  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  dom  A  e.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  ->  A  e.  No )
1413, 3syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  dom  A  e.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  ->  Ord  dom  A )
15 ordirr 5741 . . . . . . . . . 10  |-  ( Ord 
dom  A  ->  -.  dom  A  e.  dom  A )
16 ndmfv 6218 . . . . . . . . . 10  |-  ( -. 
dom  A  e.  dom  A  ->  ( A `  dom  A )  =  (/) )
1714, 15, 163syl 18 . . . . . . . . 9  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  dom  A  e.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  -> 
( A `  dom  A )  =  (/) )
1817eqeq1d 2624 . . . . . . . 8  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  dom  A  e.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  -> 
( ( A `  dom  A )  =  ( B `  dom  A
)  <->  (/)  =  ( B `
 dom  A )
) )
19 eqcom 2629 . . . . . . . 8  |-  ( (/)  =  ( B `  dom  A )  <->  ( B `  dom  A )  =  (/) )
2018, 19syl6bb 276 . . . . . . 7  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  dom  A  e.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  -> 
( ( A `  dom  A )  =  ( B `  dom  A
)  <->  ( B `  dom  A )  =  (/) ) )
21 simpl2 1065 . . . . . . . . . . 11  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  dom  A  e.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  ->  B  e.  No )
22 nofun 31802 . . . . . . . . . . 11  |-  ( B  e.  No  ->  Fun  B )
2321, 22syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  dom  A  e.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  ->  Fun  B )
24 nosgnn0 31811 . . . . . . . . . . 11  |-  -.  (/)  e.  { 1o ,  2o }
25 norn 31804 . . . . . . . . . . . . 13  |-  ( B  e.  No  ->  ran  B 
C_  { 1o ,  2o } )
2621, 25syl 17 . . . . . . . . . . . 12  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  dom  A  e.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  ->  ran  B  C_  { 1o ,  2o } )
2726sseld 3602 . . . . . . . . . . 11  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  dom  A  e.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  -> 
( (/)  e.  ran  B  -> 
(/)  e.  { 1o ,  2o } ) )
2824, 27mtoi 190 . . . . . . . . . 10  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  dom  A  e.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  ->  -.  (/)  e.  ran  B
)
29 funeldmb 31661 . . . . . . . . . 10  |-  ( ( Fun  B  /\  -.  (/) 
e.  ran  B )  ->  ( dom  A  e. 
dom  B  <->  ( B `  dom  A )  =/=  (/) ) )
3023, 28, 29syl2anc 693 . . . . . . . . 9  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  dom  A  e.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  -> 
( dom  A  e.  dom  B  <->  ( B `  dom  A )  =/=  (/) ) )
3130necon2bbid 2837 . . . . . . . 8  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  dom  A  e.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  -> 
( ( B `  dom  A )  =  (/)  <->  -.  dom  A  e.  dom  B
) )
32 nodmord 31806 . . . . . . . . . . . 12  |-  ( B  e.  No  ->  Ord  dom 
B )
33323ad2ant2 1083 . . . . . . . . . . 11  |-  ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  ->  Ord  dom 
B )
34 ordtr1 5767 . . . . . . . . . . 11  |-  ( Ord 
dom  B  ->  ( ( dom  A  e.  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) }  /\  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  dom  B )  ->  dom  A  e. 
dom  B ) )
3533, 34syl 17 . . . . . . . . . 10  |-  ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  ->  (
( dom  A  e.  |^|
{ x  e.  On  |  ( A `  x )  =/=  ( B `  x ) }  /\  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  dom  B )  ->  dom  A  e. 
dom  B ) )
3635expdimp 453 . . . . . . . . 9  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  dom  A  e.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  -> 
( |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  dom  B  ->  dom  A  e.  dom  B ) )
3736con3d 148 . . . . . . . 8  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  dom  A  e.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  -> 
( -.  dom  A  e.  dom  B  ->  -.  |^|
{ x  e.  On  |  ( A `  x )  =/=  ( B `  x ) }  e.  dom  B ) )
3831, 37sylbid 230 . . . . . . 7  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  dom  A  e.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  -> 
( ( B `  dom  A )  =  (/)  ->  -.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  dom  B ) )
3920, 38sylbid 230 . . . . . 6  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  dom  A  e.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  -> 
( ( A `  dom  A )  =  ( B `  dom  A
)  ->  -.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  dom  B ) )
4012, 39mpd 15 . . . . 5  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  dom  A  e.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  ->  -.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  dom  B )
41 ndmfv 6218 . . . . 5  |-  ( -. 
|^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) }  e.  dom  B  -> 
( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  (/) )
4240, 41syl 17 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  dom  A  e.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  -> 
( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  (/) )
4311, 42eqtr4d 2659 . . 3  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  /\  dom  A  e.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  -> 
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } ) )
442, 43mtand 691 . 2  |-  ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  ->  -.  dom  A  e.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )
45 nosepon 31818 . . 3  |-  ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  ->  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  e.  On )
46 nodmon 31803 . . . 4  |-  ( A  e.  No  ->  dom  A  e.  On )
47463ad2ant1 1082 . . 3  |-  ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  ->  dom  A  e.  On )
48 ontri1 5757 . . 3  |-  ( (
|^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) }  e.  On  /\  dom  A  e.  On )  -> 
( |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  C_  dom  A  <->  -.  dom  A  e.  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } ) )
4945, 47, 48syl2anc 693 . 2  |-  ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  ->  ( |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) }  C_  dom  A  <->  -.  dom  A  e.  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } ) )
5044, 49mpbird 247 1  |-  ( ( A  e.  No  /\  B  e.  No  /\  A  =/=  B )  ->  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) }  C_  dom  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916    C_ wss 3574   (/)c0 3915   {cpr 4179   |^|cint 4475   dom cdm 5114   ran crn 5115   Ord word 5722   Oncon0 5723   Fun wfun 5882   ` cfv 5888   1oc1o 7553   2oc2o 7554   Nocsur 31793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1o 7560  df-2o 7561  df-no 31796  df-slt 31797
This theorem is referenced by:  nosupbnd2lem1  31861  noetalem3  31865
  Copyright terms: Public domain W3C validator