| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omlfh1N | Structured version Visualization version Unicode version | ||
| Description: Foulis-Holland Theorem, part 1. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. Part of Theorem 5 in [Kalmbach] p. 25. (fh1 28477 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| omlfh1.b |
|
| omlfh1.j |
|
| omlfh1.m |
|
| omlfh1.c |
|
| Ref | Expression |
|---|---|
| omlfh1N |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omllat 34529 |
. . . . 5
| |
| 2 | omlfh1.b |
. . . . . 6
| |
| 3 | eqid 2622 |
. . . . . 6
| |
| 4 | omlfh1.j |
. . . . . 6
| |
| 5 | omlfh1.m |
. . . . . 6
| |
| 6 | 2, 3, 4, 5 | latledi 17089 |
. . . . 5
|
| 7 | 1, 6 | sylan 488 |
. . . 4
|
| 8 | 7 | 3adant3 1081 |
. . 3
|
| 9 | 1 | adantr 481 |
. . . . . . 7
|
| 10 | simpr1 1067 |
. . . . . . 7
| |
| 11 | simpr2 1068 |
. . . . . . . 8
| |
| 12 | simpr3 1069 |
. . . . . . . 8
| |
| 13 | 2, 4 | latjcl 17051 |
. . . . . . . 8
|
| 14 | 9, 11, 12, 13 | syl3anc 1326 |
. . . . . . 7
|
| 15 | 2, 5 | latmcom 17075 |
. . . . . . 7
|
| 16 | 9, 10, 14, 15 | syl3anc 1326 |
. . . . . 6
|
| 17 | omlol 34527 |
. . . . . . . . 9
| |
| 18 | 17 | adantr 481 |
. . . . . . . 8
|
| 19 | 2, 5 | latmcl 17052 |
. . . . . . . . 9
|
| 20 | 9, 10, 11, 19 | syl3anc 1326 |
. . . . . . . 8
|
| 21 | 2, 5 | latmcl 17052 |
. . . . . . . . 9
|
| 22 | 9, 10, 12, 21 | syl3anc 1326 |
. . . . . . . 8
|
| 23 | eqid 2622 |
. . . . . . . . 9
| |
| 24 | 2, 4, 5, 23 | oldmj1 34508 |
. . . . . . . 8
|
| 25 | 18, 20, 22, 24 | syl3anc 1326 |
. . . . . . 7
|
| 26 | 2, 4, 5, 23 | oldmm1 34504 |
. . . . . . . . 9
|
| 27 | 18, 10, 11, 26 | syl3anc 1326 |
. . . . . . . 8
|
| 28 | 2, 4, 5, 23 | oldmm1 34504 |
. . . . . . . . 9
|
| 29 | 18, 10, 12, 28 | syl3anc 1326 |
. . . . . . . 8
|
| 30 | 27, 29 | oveq12d 6668 |
. . . . . . 7
|
| 31 | 25, 30 | eqtrd 2656 |
. . . . . 6
|
| 32 | 16, 31 | oveq12d 6668 |
. . . . 5
|
| 33 | 32 | 3adant3 1081 |
. . . 4
|
| 34 | omlop 34528 |
. . . . . . . . . . 11
| |
| 35 | 34 | adantr 481 |
. . . . . . . . . 10
|
| 36 | 2, 23 | opoccl 34481 |
. . . . . . . . . 10
|
| 37 | 35, 10, 36 | syl2anc 693 |
. . . . . . . . 9
|
| 38 | 2, 23 | opoccl 34481 |
. . . . . . . . . 10
|
| 39 | 35, 11, 38 | syl2anc 693 |
. . . . . . . . 9
|
| 40 | 2, 4 | latjcl 17051 |
. . . . . . . . 9
|
| 41 | 9, 37, 39, 40 | syl3anc 1326 |
. . . . . . . 8
|
| 42 | 2, 23 | opoccl 34481 |
. . . . . . . . . 10
|
| 43 | 35, 12, 42 | syl2anc 693 |
. . . . . . . . 9
|
| 44 | 2, 4 | latjcl 17051 |
. . . . . . . . 9
|
| 45 | 9, 37, 43, 44 | syl3anc 1326 |
. . . . . . . 8
|
| 46 | 2, 5 | latmcl 17052 |
. . . . . . . 8
|
| 47 | 9, 41, 45, 46 | syl3anc 1326 |
. . . . . . 7
|
| 48 | 2, 5 | latmassOLD 34516 |
. . . . . . 7
|
| 49 | 18, 14, 10, 47, 48 | syl13anc 1328 |
. . . . . 6
|
| 50 | 49 | 3adant3 1081 |
. . . . 5
|
| 51 | omlfh1.c |
. . . . . . . . . . . . . 14
| |
| 52 | 2, 23, 51 | cmt2N 34537 |
. . . . . . . . . . . . 13
|
| 53 | 52 | 3adant3r3 1276 |
. . . . . . . . . . . 12
|
| 54 | simpl 473 |
. . . . . . . . . . . . 13
| |
| 55 | 2, 4, 5, 23, 51 | cmtbr3N 34541 |
. . . . . . . . . . . . 13
|
| 56 | 54, 10, 39, 55 | syl3anc 1326 |
. . . . . . . . . . . 12
|
| 57 | 53, 56 | bitrd 268 |
. . . . . . . . . . 11
|
| 58 | 57 | biimpa 501 |
. . . . . . . . . 10
|
| 59 | 58 | adantrr 753 |
. . . . . . . . 9
|
| 60 | 59 | 3impa 1259 |
. . . . . . . 8
|
| 61 | 2, 23, 51 | cmt2N 34537 |
. . . . . . . . . . . . 13
|
| 62 | 61 | 3adant3r2 1275 |
. . . . . . . . . . . 12
|
| 63 | 2, 4, 5, 23, 51 | cmtbr3N 34541 |
. . . . . . . . . . . . 13
|
| 64 | 54, 10, 43, 63 | syl3anc 1326 |
. . . . . . . . . . . 12
|
| 65 | 62, 64 | bitrd 268 |
. . . . . . . . . . 11
|
| 66 | 65 | biimpa 501 |
. . . . . . . . . 10
|
| 67 | 66 | adantrl 752 |
. . . . . . . . 9
|
| 68 | 67 | 3impa 1259 |
. . . . . . . 8
|
| 69 | 60, 68 | oveq12d 6668 |
. . . . . . 7
|
| 70 | 2, 5 | latmmdiN 34521 |
. . . . . . . . 9
|
| 71 | 18, 10, 41, 45, 70 | syl13anc 1328 |
. . . . . . . 8
|
| 72 | 71 | 3adant3 1081 |
. . . . . . 7
|
| 73 | 2, 5 | latmmdiN 34521 |
. . . . . . . . 9
|
| 74 | 18, 10, 39, 43, 73 | syl13anc 1328 |
. . . . . . . 8
|
| 75 | 74 | 3adant3 1081 |
. . . . . . 7
|
| 76 | 69, 72, 75 | 3eqtr4d 2666 |
. . . . . 6
|
| 77 | 76 | oveq2d 6666 |
. . . . 5
|
| 78 | 2, 5 | latmcl 17052 |
. . . . . . . 8
|
| 79 | 9, 39, 43, 78 | syl3anc 1326 |
. . . . . . 7
|
| 80 | 2, 5 | latm12 34517 |
. . . . . . 7
|
| 81 | 18, 14, 10, 79, 80 | syl13anc 1328 |
. . . . . 6
|
| 82 | 81 | 3adant3 1081 |
. . . . 5
|
| 83 | 50, 77, 82 | 3eqtrd 2660 |
. . . 4
|
| 84 | 2, 4, 5, 23 | oldmj1 34508 |
. . . . . . . . . 10
|
| 85 | 18, 11, 12, 84 | syl3anc 1326 |
. . . . . . . . 9
|
| 86 | 85 | oveq2d 6666 |
. . . . . . . 8
|
| 87 | eqid 2622 |
. . . . . . . . . 10
| |
| 88 | 2, 23, 5, 87 | opnoncon 34495 |
. . . . . . . . 9
|
| 89 | 35, 14, 88 | syl2anc 693 |
. . . . . . . 8
|
| 90 | 86, 89 | eqtr3d 2658 |
. . . . . . 7
|
| 91 | 90 | oveq2d 6666 |
. . . . . 6
|
| 92 | 2, 5, 87 | olm01 34523 |
. . . . . . 7
|
| 93 | 18, 10, 92 | syl2anc 693 |
. . . . . 6
|
| 94 | 91, 93 | eqtrd 2656 |
. . . . 5
|
| 95 | 94 | 3adant3 1081 |
. . . 4
|
| 96 | 33, 83, 95 | 3eqtrd 2660 |
. . 3
|
| 97 | 2, 4 | latjcl 17051 |
. . . . . 6
|
| 98 | 9, 20, 22, 97 | syl3anc 1326 |
. . . . 5
|
| 99 | 2, 5 | latmcl 17052 |
. . . . . 6
|
| 100 | 9, 10, 14, 99 | syl3anc 1326 |
. . . . 5
|
| 101 | 2, 3, 5, 23, 87 | omllaw3 34532 |
. . . . 5
|
| 102 | 54, 98, 100, 101 | syl3anc 1326 |
. . . 4
|
| 103 | 102 | 3adant3 1081 |
. . 3
|
| 104 | 8, 96, 103 | mp2and 715 |
. 2
|
| 105 | 104 | eqcomd 2628 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-lat 17046 df-oposet 34463 df-cmtN 34464 df-ol 34465 df-oml 34466 |
| This theorem is referenced by: omlfh3N 34546 omlmod1i2N 34547 |
| Copyright terms: Public domain | W3C validator |