MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopthlem1 Structured version   Visualization version   GIF version

Theorem omopthlem1 7735
Description: Lemma for omopthi 7737. (Contributed by Scott Fenton, 18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypotheses
Ref Expression
omopthlem1.1 𝐴 ∈ ω
omopthlem1.2 𝐶 ∈ ω
Assertion
Ref Expression
omopthlem1 (𝐴𝐶 → ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) ∈ (𝐶 ·𝑜 𝐶))

Proof of Theorem omopthlem1
StepHypRef Expression
1 omopthlem1.1 . . . . 5 𝐴 ∈ ω
2 peano2 7086 . . . . 5 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
31, 2ax-mp 5 . . . 4 suc 𝐴 ∈ ω
4 omopthlem1.2 . . . 4 𝐶 ∈ ω
5 nnmwordi 7715 . . . 4 ((suc 𝐴 ∈ ω ∧ 𝐶 ∈ ω ∧ suc 𝐴 ∈ ω) → (suc 𝐴𝐶 → (suc 𝐴 ·𝑜 suc 𝐴) ⊆ (suc 𝐴 ·𝑜 𝐶)))
63, 4, 3, 5mp3an 1424 . . 3 (suc 𝐴𝐶 → (suc 𝐴 ·𝑜 suc 𝐴) ⊆ (suc 𝐴 ·𝑜 𝐶))
7 nnmwordri 7716 . . . 4 ((suc 𝐴 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐶 ∈ ω) → (suc 𝐴𝐶 → (suc 𝐴 ·𝑜 𝐶) ⊆ (𝐶 ·𝑜 𝐶)))
83, 4, 4, 7mp3an 1424 . . 3 (suc 𝐴𝐶 → (suc 𝐴 ·𝑜 𝐶) ⊆ (𝐶 ·𝑜 𝐶))
96, 8sstrd 3613 . 2 (suc 𝐴𝐶 → (suc 𝐴 ·𝑜 suc 𝐴) ⊆ (𝐶 ·𝑜 𝐶))
101nnoni 7072 . . 3 𝐴 ∈ On
114nnoni 7072 . . 3 𝐶 ∈ On
1210, 11onsucssi 7041 . 2 (𝐴𝐶 ↔ suc 𝐴𝐶)
131, 1nnmcli 7695 . . . . . 6 (𝐴 ·𝑜 𝐴) ∈ ω
14 2onn 7720 . . . . . . 7 2𝑜 ∈ ω
151, 14nnmcli 7695 . . . . . 6 (𝐴 ·𝑜 2𝑜) ∈ ω
1613, 15nnacli 7694 . . . . 5 ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) ∈ ω
1716nnoni 7072 . . . 4 ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) ∈ On
184, 4nnmcli 7695 . . . . 5 (𝐶 ·𝑜 𝐶) ∈ ω
1918nnoni 7072 . . . 4 (𝐶 ·𝑜 𝐶) ∈ On
2017, 19onsucssi 7041 . . 3 (((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) ∈ (𝐶 ·𝑜 𝐶) ↔ suc ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) ⊆ (𝐶 ·𝑜 𝐶))
213, 1nnmcli 7695 . . . . . 6 (suc 𝐴 ·𝑜 𝐴) ∈ ω
22 nnasuc 7686 . . . . . 6 (((suc 𝐴 ·𝑜 𝐴) ∈ ω ∧ 𝐴 ∈ ω) → ((suc 𝐴 ·𝑜 𝐴) +𝑜 suc 𝐴) = suc ((suc 𝐴 ·𝑜 𝐴) +𝑜 𝐴))
2321, 1, 22mp2an 708 . . . . 5 ((suc 𝐴 ·𝑜 𝐴) +𝑜 suc 𝐴) = suc ((suc 𝐴 ·𝑜 𝐴) +𝑜 𝐴)
24 nnmsuc 7687 . . . . . 6 ((suc 𝐴 ∈ ω ∧ 𝐴 ∈ ω) → (suc 𝐴 ·𝑜 suc 𝐴) = ((suc 𝐴 ·𝑜 𝐴) +𝑜 suc 𝐴))
253, 1, 24mp2an 708 . . . . 5 (suc 𝐴 ·𝑜 suc 𝐴) = ((suc 𝐴 ·𝑜 𝐴) +𝑜 suc 𝐴)
26 nnaass 7702 . . . . . . . 8 (((𝐴 ·𝑜 𝐴) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ·𝑜 𝐴) +𝑜 𝐴) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 +𝑜 𝐴)))
2713, 1, 1, 26mp3an 1424 . . . . . . 7 (((𝐴 ·𝑜 𝐴) +𝑜 𝐴) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 +𝑜 𝐴))
28 nnmcom 7706 . . . . . . . . . 10 ((suc 𝐴 ∈ ω ∧ 𝐴 ∈ ω) → (suc 𝐴 ·𝑜 𝐴) = (𝐴 ·𝑜 suc 𝐴))
293, 1, 28mp2an 708 . . . . . . . . 9 (suc 𝐴 ·𝑜 𝐴) = (𝐴 ·𝑜 suc 𝐴)
30 nnmsuc 7687 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐴 ∈ ω) → (𝐴 ·𝑜 suc 𝐴) = ((𝐴 ·𝑜 𝐴) +𝑜 𝐴))
311, 1, 30mp2an 708 . . . . . . . . 9 (𝐴 ·𝑜 suc 𝐴) = ((𝐴 ·𝑜 𝐴) +𝑜 𝐴)
3229, 31eqtri 2644 . . . . . . . 8 (suc 𝐴 ·𝑜 𝐴) = ((𝐴 ·𝑜 𝐴) +𝑜 𝐴)
3332oveq1i 6660 . . . . . . 7 ((suc 𝐴 ·𝑜 𝐴) +𝑜 𝐴) = (((𝐴 ·𝑜 𝐴) +𝑜 𝐴) +𝑜 𝐴)
34 nnm2 7729 . . . . . . . . 9 (𝐴 ∈ ω → (𝐴 ·𝑜 2𝑜) = (𝐴 +𝑜 𝐴))
351, 34ax-mp 5 . . . . . . . 8 (𝐴 ·𝑜 2𝑜) = (𝐴 +𝑜 𝐴)
3635oveq2i 6661 . . . . . . 7 ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) = ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 +𝑜 𝐴))
3727, 33, 363eqtr4ri 2655 . . . . . 6 ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) = ((suc 𝐴 ·𝑜 𝐴) +𝑜 𝐴)
38 suceq 5790 . . . . . 6 (((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) = ((suc 𝐴 ·𝑜 𝐴) +𝑜 𝐴) → suc ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) = suc ((suc 𝐴 ·𝑜 𝐴) +𝑜 𝐴))
3937, 38ax-mp 5 . . . . 5 suc ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) = suc ((suc 𝐴 ·𝑜 𝐴) +𝑜 𝐴)
4023, 25, 393eqtr4ri 2655 . . . 4 suc ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) = (suc 𝐴 ·𝑜 suc 𝐴)
4140sseq1i 3629 . . 3 (suc ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) ⊆ (𝐶 ·𝑜 𝐶) ↔ (suc 𝐴 ·𝑜 suc 𝐴) ⊆ (𝐶 ·𝑜 𝐶))
4220, 41bitri 264 . 2 (((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) ∈ (𝐶 ·𝑜 𝐶) ↔ (suc 𝐴 ·𝑜 suc 𝐴) ⊆ (𝐶 ·𝑜 𝐶))
439, 12, 423imtr4i 281 1 (𝐴𝐶 → ((𝐴 ·𝑜 𝐴) +𝑜 (𝐴 ·𝑜 2𝑜)) ∈ (𝐶 ·𝑜 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  wss 3574  suc csuc 5725  (class class class)co 6650  ωcom 7065  2𝑜c2o 7554   +𝑜 coa 7557   ·𝑜 comu 7558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565
This theorem is referenced by:  omopthlem2  7736
  Copyright terms: Public domain W3C validator