| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppgplusfval | Structured version Visualization version GIF version | ||
| Description: Value of the addition operation of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Fan Zheng, 26-Jun-2016.) |
| Ref | Expression |
|---|---|
| oppgval.2 | ⊢ + = (+g‘𝑅) |
| oppgval.3 | ⊢ 𝑂 = (oppg‘𝑅) |
| oppgplusfval.4 | ⊢ ✚ = (+g‘𝑂) |
| Ref | Expression |
|---|---|
| oppgplusfval | ⊢ ✚ = tpos + |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgplusfval.4 | . 2 ⊢ ✚ = (+g‘𝑂) | |
| 2 | oppgval.2 | . . . . . . 7 ⊢ + = (+g‘𝑅) | |
| 3 | fvex 6201 | . . . . . . 7 ⊢ (+g‘𝑅) ∈ V | |
| 4 | 2, 3 | eqeltri 2697 | . . . . . 6 ⊢ + ∈ V |
| 5 | 4 | tposex 7386 | . . . . 5 ⊢ tpos + ∈ V |
| 6 | plusgid 15977 | . . . . . 6 ⊢ +g = Slot (+g‘ndx) | |
| 7 | 6 | setsid 15914 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ tpos + ∈ V) → tpos + = (+g‘(𝑅 sSet 〈(+g‘ndx), tpos + 〉))) |
| 8 | 5, 7 | mpan2 707 | . . . 4 ⊢ (𝑅 ∈ V → tpos + = (+g‘(𝑅 sSet 〈(+g‘ndx), tpos + 〉))) |
| 9 | oppgval.3 | . . . . . 6 ⊢ 𝑂 = (oppg‘𝑅) | |
| 10 | 2, 9 | oppgval 17777 | . . . . 5 ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), tpos + 〉) |
| 11 | 10 | fveq2i 6194 | . . . 4 ⊢ (+g‘𝑂) = (+g‘(𝑅 sSet 〈(+g‘ndx), tpos + 〉)) |
| 12 | 8, 11 | syl6reqr 2675 | . . 3 ⊢ (𝑅 ∈ V → (+g‘𝑂) = tpos + ) |
| 13 | tpos0 7382 | . . . . 5 ⊢ tpos ∅ = ∅ | |
| 14 | 6 | str0 15911 | . . . . 5 ⊢ ∅ = (+g‘∅) |
| 15 | 13, 14 | eqtr2i 2645 | . . . 4 ⊢ (+g‘∅) = tpos ∅ |
| 16 | reldmsets 15886 | . . . . . . 7 ⊢ Rel dom sSet | |
| 17 | 16 | ovprc1 6684 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (𝑅 sSet 〈(+g‘ndx), tpos + 〉) = ∅) |
| 18 | 10, 17 | syl5eq 2668 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝑂 = ∅) |
| 19 | 18 | fveq2d 6195 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (+g‘𝑂) = (+g‘∅)) |
| 20 | fvprc 6185 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (+g‘𝑅) = ∅) | |
| 21 | 2, 20 | syl5eq 2668 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → + = ∅) |
| 22 | 21 | tposeqd 7355 | . . . 4 ⊢ (¬ 𝑅 ∈ V → tpos + = tpos ∅) |
| 23 | 15, 19, 22 | 3eqtr4a 2682 | . . 3 ⊢ (¬ 𝑅 ∈ V → (+g‘𝑂) = tpos + ) |
| 24 | 12, 23 | pm2.61i 176 | . 2 ⊢ (+g‘𝑂) = tpos + |
| 25 | 1, 24 | eqtri 2644 | 1 ⊢ ✚ = tpos + |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∅c0 3915 〈cop 4183 ‘cfv 5888 (class class class)co 6650 tpos ctpos 7351 ndxcnx 15854 sSet csts 15855 +gcplusg 15941 oppgcoppg 17775 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-i2m1 10004 ax-1ne0 10005 ax-rrecex 10008 ax-cnre 10009 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-nn 11021 df-2 11079 df-ndx 15860 df-slot 15861 df-sets 15864 df-plusg 15954 df-oppg 17776 |
| This theorem is referenced by: oppgplus 17779 |
| Copyright terms: Public domain | W3C validator |