![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opprlem | Structured version Visualization version GIF version |
Description: Lemma for opprbas 18629 and oppradd 18630. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
opprbas.1 | ⊢ 𝑂 = (oppr‘𝑅) |
opprlem.2 | ⊢ 𝐸 = Slot 𝑁 |
opprlem.3 | ⊢ 𝑁 ∈ ℕ |
opprlem.4 | ⊢ 𝑁 < 3 |
Ref | Expression |
---|---|
opprlem | ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprlem.2 | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
2 | opprlem.3 | . . . 4 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxid 15883 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | 2 | nnrei 11029 | . . . . 5 ⊢ 𝑁 ∈ ℝ |
5 | opprlem.4 | . . . . 5 ⊢ 𝑁 < 3 | |
6 | 4, 5 | ltneii 10150 | . . . 4 ⊢ 𝑁 ≠ 3 |
7 | 1, 2 | ndxarg 15882 | . . . . 5 ⊢ (𝐸‘ndx) = 𝑁 |
8 | mulrndx 15996 | . . . . 5 ⊢ (.r‘ndx) = 3 | |
9 | 7, 8 | neeq12i 2860 | . . . 4 ⊢ ((𝐸‘ndx) ≠ (.r‘ndx) ↔ 𝑁 ≠ 3) |
10 | 6, 9 | mpbir 221 | . . 3 ⊢ (𝐸‘ndx) ≠ (.r‘ndx) |
11 | 3, 10 | setsnid 15915 | . 2 ⊢ (𝐸‘𝑅) = (𝐸‘(𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉)) |
12 | eqid 2622 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
13 | eqid 2622 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
14 | opprbas.1 | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
15 | 12, 13, 14 | opprval 18624 | . . 3 ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉) |
16 | 15 | fveq2i 6194 | . 2 ⊢ (𝐸‘𝑂) = (𝐸‘(𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉)) |
17 | 11, 16 | eqtr4i 2647 | 1 ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ∈ wcel 1990 ≠ wne 2794 〈cop 4183 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 tpos ctpos 7351 < clt 10074 ℕcn 11020 3c3 11071 ndxcnx 15854 sSet csts 15855 Slot cslot 15856 Basecbs 15857 .rcmulr 15942 opprcoppr 18622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-i2m1 10004 ax-1ne0 10005 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-ltxr 10079 df-nn 11021 df-2 11079 df-3 11080 df-ndx 15860 df-slot 15861 df-sets 15864 df-mulr 15955 df-oppr 18623 |
This theorem is referenced by: opprbas 18629 oppradd 18630 |
Copyright terms: Public domain | W3C validator |