| Step | Hyp | Ref
| Expression |
| 1 | | ordttopon.3 |
. . . . . . . . 9
⊢ 𝑋 = dom 𝑅 |
| 2 | | eqid 2622 |
. . . . . . . . 9
⊢ ran
(𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) |
| 3 | | eqid 2622 |
. . . . . . . . 9
⊢ ran
(𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) |
| 4 | 1, 2, 3 | ordtuni 20994 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → 𝑋 = ∪ ({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))) |
| 5 | 4 | adantr 481 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → 𝑋 = ∪ ({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))) |
| 6 | | dmexg 7097 |
. . . . . . . . 9
⊢ (𝑅 ∈ 𝑉 → dom 𝑅 ∈ V) |
| 7 | 1, 6 | syl5eqel 2705 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → 𝑋 ∈ V) |
| 8 | 7 | adantr 481 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → 𝑋 ∈ V) |
| 9 | 5, 8 | eqeltrrd 2702 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → ∪
({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V) |
| 10 | | uniexb 6973 |
. . . . . 6
⊢ (({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V ↔ ∪ ({𝑋}
∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V) |
| 11 | 9, 10 | sylibr 224 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → ({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V) |
| 12 | | ssfii 8325 |
. . . . 5
⊢ (({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V → ({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (fi‘({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))))) |
| 13 | 11, 12 | syl 17 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → ({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (fi‘({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))))) |
| 14 | | fibas 20781 |
. . . . 5
⊢
(fi‘({𝑋} ∪
(ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ∈ TopBases |
| 15 | | bastg 20770 |
. . . . 5
⊢
((fi‘({𝑋}
∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ∈ TopBases →
(fi‘({𝑋} ∪ (ran
(𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ⊆ (topGen‘(fi‘({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))))) |
| 16 | 14, 15 | ax-mp 5 |
. . . 4
⊢
(fi‘({𝑋} ∪
(ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ⊆ (topGen‘(fi‘({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))))) |
| 17 | 13, 16 | syl6ss 3615 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → ({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (topGen‘(fi‘({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))))) |
| 18 | 1, 2, 3 | ordtval 20993 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))))) |
| 19 | 18 | adantr 481 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))))) |
| 20 | 17, 19 | sseqtr4d 3642 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → ({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (ordTop‘𝑅)) |
| 21 | | ssun2 3777 |
. . 3
⊢ (ran
(𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})) ⊆ ({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) |
| 22 | | ssun2 3777 |
. . . 4
⊢ ran
(𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ⊆ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})) |
| 23 | | simpr 477 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → 𝑃 ∈ 𝑋) |
| 24 | | eqidd 2623 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} = {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥}) |
| 25 | | breq1 4656 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑃 → (𝑦𝑅𝑥 ↔ 𝑃𝑅𝑥)) |
| 26 | 25 | notbid 308 |
. . . . . . . . 9
⊢ (𝑦 = 𝑃 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑃𝑅𝑥)) |
| 27 | 26 | rabbidv 3189 |
. . . . . . . 8
⊢ (𝑦 = 𝑃 → {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} = {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥}) |
| 28 | 27 | eqeq2d 2632 |
. . . . . . 7
⊢ (𝑦 = 𝑃 → ({𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} = {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥} ↔ {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} = {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥})) |
| 29 | 28 | rspcev 3309 |
. . . . . 6
⊢ ((𝑃 ∈ 𝑋 ∧ {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} = {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥}) → ∃𝑦 ∈ 𝑋 {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} = {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) |
| 30 | 23, 24, 29 | syl2anc 693 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} = {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) |
| 31 | | rabexg 4812 |
. . . . . 6
⊢ (𝑋 ∈ V → {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ V) |
| 32 | | eqid 2622 |
. . . . . . 7
⊢ (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) = (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) |
| 33 | 32 | elrnmpt 5372 |
. . . . . 6
⊢ ({𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ V → ({𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ↔ ∃𝑦 ∈ 𝑋 {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} = {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})) |
| 34 | 8, 31, 33 | 3syl 18 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → ({𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ↔ ∃𝑦 ∈ 𝑋 {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} = {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})) |
| 35 | 30, 34 | mpbird 247 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})) |
| 36 | 22, 35 | sseldi 3601 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) |
| 37 | 21, 36 | sseldi 3601 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ ({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))) |
| 38 | 20, 37 | sseldd 3604 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ (ordTop‘𝑅)) |