MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtopn1 Structured version   Visualization version   GIF version

Theorem ordtopn1 20998
Description: An upward ray (𝑃, +∞) is open. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ordttopon.3 𝑋 = dom 𝑅
Assertion
Ref Expression
ordtopn1 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ (ordTop‘𝑅))
Distinct variable groups:   𝑥,𝑃   𝑥,𝑅   𝑥,𝑉   𝑥,𝑋

Proof of Theorem ordtopn1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ordttopon.3 . . . . . . . . 9 𝑋 = dom 𝑅
2 eqid 2622 . . . . . . . . 9 ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦})
3 eqid 2622 . . . . . . . . 9 ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})
41, 2, 3ordtuni 20994 . . . . . . . 8 (𝑅𝑉𝑋 = ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))
54adantr 481 . . . . . . 7 ((𝑅𝑉𝑃𝑋) → 𝑋 = ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))
6 dmexg 7097 . . . . . . . . 9 (𝑅𝑉 → dom 𝑅 ∈ V)
71, 6syl5eqel 2705 . . . . . . . 8 (𝑅𝑉𝑋 ∈ V)
87adantr 481 . . . . . . 7 ((𝑅𝑉𝑃𝑋) → 𝑋 ∈ V)
95, 8eqeltrrd 2702 . . . . . 6 ((𝑅𝑉𝑃𝑋) → ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V)
10 uniexb 6973 . . . . . 6 (({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V ↔ ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V)
119, 10sylibr 224 . . . . 5 ((𝑅𝑉𝑃𝑋) → ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V)
12 ssfii 8325 . . . . 5 (({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V → ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))))
1311, 12syl 17 . . . 4 ((𝑅𝑉𝑃𝑋) → ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))))
14 fibas 20781 . . . . 5 (fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ∈ TopBases
15 bastg 20770 . . . . 5 ((fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ∈ TopBases → (fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ⊆ (topGen‘(fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))))
1614, 15ax-mp 5 . . . 4 (fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ⊆ (topGen‘(fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))))
1713, 16syl6ss 3615 . . 3 ((𝑅𝑉𝑃𝑋) → ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (topGen‘(fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))))
181, 2, 3ordtval 20993 . . . 4 (𝑅𝑉 → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))))
1918adantr 481 . . 3 ((𝑅𝑉𝑃𝑋) → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))))
2017, 19sseqtr4d 3642 . 2 ((𝑅𝑉𝑃𝑋) → ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (ordTop‘𝑅))
21 ssun2 3777 . . 3 (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})) ⊆ ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))
22 ssun1 3776 . . . 4 ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ⊆ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))
23 simpr 477 . . . . . 6 ((𝑅𝑉𝑃𝑋) → 𝑃𝑋)
24 eqidd 2623 . . . . . 6 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃})
25 breq2 4657 . . . . . . . . . 10 (𝑦 = 𝑃 → (𝑥𝑅𝑦𝑥𝑅𝑃))
2625notbid 308 . . . . . . . . 9 (𝑦 = 𝑃 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑅𝑃))
2726rabbidv 3189 . . . . . . . 8 (𝑦 = 𝑃 → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦} = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃})
2827eqeq2d 2632 . . . . . . 7 (𝑦 = 𝑃 → ({𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦} ↔ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃}))
2928rspcev 3309 . . . . . 6 ((𝑃𝑋 ∧ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃}) → ∃𝑦𝑋 {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦})
3023, 24, 29syl2anc 693 . . . . 5 ((𝑅𝑉𝑃𝑋) → ∃𝑦𝑋 {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦})
31 rabexg 4812 . . . . . 6 (𝑋 ∈ V → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ V)
32 eqid 2622 . . . . . . 7 (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) = (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦})
3332elrnmpt 5372 . . . . . 6 ({𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ V → ({𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ↔ ∃𝑦𝑋 {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}))
348, 31, 333syl 18 . . . . 5 ((𝑅𝑉𝑃𝑋) → ({𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ↔ ∃𝑦𝑋 {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}))
3530, 34mpbird 247 . . . 4 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}))
3622, 35sseldi 3601 . . 3 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))
3721, 36sseldi 3601 . 2 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))
3820, 37sseldd 3604 1 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ (ordTop‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  {crab 2916  Vcvv 3200  cun 3572  wss 3574  {csn 4177   cuni 4436   class class class wbr 4653  cmpt 4729  dom cdm 5114  ran crn 5115  cfv 5888  ficfi 8316  topGenctg 16098  ordTopcordt 16159  TopBasesctb 20749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-topgen 16104  df-ordt 16161  df-bases 20750
This theorem is referenced by:  ordtopn3  21000  ordtcld1  21001  ordtrest  21006  ordtrest2lem  21007  ordthauslem  21187  ordthmeolem  21604  ordtrestNEW  29967  ordtrest2NEWlem  29968
  Copyright terms: Public domain W3C validator