| Step | Hyp | Ref
| Expression |
| 1 | | inex1g 4801 |
. . . 4
⊢ (𝑅 ∈ PosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V) |
| 2 | 1 | adantr 481 |
. . 3
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V) |
| 3 | | eqid 2622 |
. . . 4
⊢ dom
(𝑅 ∩ (𝐴 × 𝐴)) = dom (𝑅 ∩ (𝐴 × 𝐴)) |
| 4 | | eqid 2622 |
. . . 4
⊢ ran
(𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) = ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) |
| 5 | | eqid 2622 |
. . . 4
⊢ ran
(𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) = ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) |
| 6 | 3, 4, 5 | ordtval 20993 |
. . 3
⊢ ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = (topGen‘(fi‘({dom (𝑅 ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦})))))) |
| 7 | 2, 6 | syl 17 |
. 2
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = (topGen‘(fi‘({dom (𝑅 ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦})))))) |
| 8 | | ordttop 21004 |
. . . 4
⊢ (𝑅 ∈ PosetRel →
(ordTop‘𝑅) ∈
Top) |
| 9 | | resttop 20964 |
. . . 4
⊢
(((ordTop‘𝑅)
∈ Top ∧ 𝐴 ∈
𝑉) →
((ordTop‘𝑅)
↾t 𝐴)
∈ Top) |
| 10 | 8, 9 | sylan 488 |
. . 3
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → ((ordTop‘𝑅) ↾t 𝐴) ∈ Top) |
| 11 | | eqid 2622 |
. . . . . . . 8
⊢ dom 𝑅 = dom 𝑅 |
| 12 | 11 | psssdm2 17215 |
. . . . . . 7
⊢ (𝑅 ∈ PosetRel → dom
(𝑅 ∩ (𝐴 × 𝐴)) = (dom 𝑅 ∩ 𝐴)) |
| 13 | 12 | adantr 481 |
. . . . . 6
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → dom (𝑅 ∩ (𝐴 × 𝐴)) = (dom 𝑅 ∩ 𝐴)) |
| 14 | 8 | adantr 481 |
. . . . . . 7
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (ordTop‘𝑅) ∈ Top) |
| 15 | | simpr 477 |
. . . . . . 7
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) |
| 16 | 11 | ordttopon 20997 |
. . . . . . . . 9
⊢ (𝑅 ∈ PosetRel →
(ordTop‘𝑅) ∈
(TopOn‘dom 𝑅)) |
| 17 | 16 | adantr 481 |
. . . . . . . 8
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (ordTop‘𝑅) ∈ (TopOn‘dom 𝑅)) |
| 18 | | toponmax 20730 |
. . . . . . . 8
⊢
((ordTop‘𝑅)
∈ (TopOn‘dom 𝑅)
→ dom 𝑅 ∈
(ordTop‘𝑅)) |
| 19 | 17, 18 | syl 17 |
. . . . . . 7
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → dom 𝑅 ∈ (ordTop‘𝑅)) |
| 20 | | elrestr 16089 |
. . . . . . 7
⊢
(((ordTop‘𝑅)
∈ Top ∧ 𝐴 ∈
𝑉 ∧ dom 𝑅 ∈ (ordTop‘𝑅)) → (dom 𝑅 ∩ 𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴)) |
| 21 | 14, 15, 19, 20 | syl3anc 1326 |
. . . . . 6
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (dom 𝑅 ∩ 𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴)) |
| 22 | 13, 21 | eqeltrd 2701 |
. . . . 5
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → dom (𝑅 ∩ (𝐴 × 𝐴)) ∈ ((ordTop‘𝑅) ↾t 𝐴)) |
| 23 | 22 | snssd 4340 |
. . . 4
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → {dom (𝑅 ∩ (𝐴 × 𝐴))} ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
| 24 | | rabeq 3192 |
. . . . . . . . 9
⊢ (dom
(𝑅 ∩ (𝐴 × 𝐴)) = (dom 𝑅 ∩ 𝐴) → {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} = {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) |
| 25 | 13, 24 | syl 17 |
. . . . . . . 8
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} = {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) |
| 26 | 13, 25 | mpteq12dv 4733 |
. . . . . . 7
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) = (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥})) |
| 27 | 26 | rneqd 5353 |
. . . . . 6
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) = ran (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥})) |
| 28 | | inrab2 3900 |
. . . . . . . . . 10
⊢ ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∩ 𝐴) = {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦𝑅𝑥} |
| 29 | | inss2 3834 |
. . . . . . . . . . . . . 14
⊢ (dom
𝑅 ∩ 𝐴) ⊆ 𝐴 |
| 30 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) ∧ 𝑦 ∈ (dom 𝑅 ∩ 𝐴)) → 𝑦 ∈ (dom 𝑅 ∩ 𝐴)) |
| 31 | 29, 30 | sseldi 3601 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) ∧ 𝑦 ∈ (dom 𝑅 ∩ 𝐴)) → 𝑦 ∈ 𝐴) |
| 32 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) |
| 33 | 29, 32 | sseldi 3601 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → 𝑥 ∈ 𝐴) |
| 34 | 33 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) ∧ 𝑦 ∈ (dom 𝑅 ∩ 𝐴)) → 𝑥 ∈ 𝐴) |
| 35 | | brinxp 5181 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦𝑅𝑥 ↔ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)) |
| 36 | 31, 34, 35 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) ∧ 𝑦 ∈ (dom 𝑅 ∩ 𝐴)) → (𝑦𝑅𝑥 ↔ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)) |
| 37 | 36 | notbid 308 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) ∧ 𝑦 ∈ (dom 𝑅 ∩ 𝐴)) → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)) |
| 38 | 37 | rabbidva 3188 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦𝑅𝑥} = {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) |
| 39 | 28, 38 | syl5eq 2668 |
. . . . . . . . 9
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∩ 𝐴) = {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) |
| 40 | 14 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → (ordTop‘𝑅) ∈ Top) |
| 41 | 15 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → 𝐴 ∈ 𝑉) |
| 42 | | simpl 473 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → 𝑅 ∈ PosetRel) |
| 43 | | inss1 3833 |
. . . . . . . . . . . 12
⊢ (dom
𝑅 ∩ 𝐴) ⊆ dom 𝑅 |
| 44 | 43 | sseli 3599 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (dom 𝑅 ∩ 𝐴) → 𝑥 ∈ dom 𝑅) |
| 45 | 11 | ordtopn1 20998 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅)) |
| 46 | 42, 44, 45 | syl2an 494 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅)) |
| 47 | | elrestr 16089 |
. . . . . . . . . 10
⊢
(((ordTop‘𝑅)
∈ Top ∧ 𝐴 ∈
𝑉 ∧ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∈ (ordTop‘𝑅)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∩ 𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴)) |
| 48 | 40, 41, 46, 47 | syl3anc 1326 |
. . . . . . . . 9
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥} ∩ 𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴)) |
| 49 | 39, 48 | eqeltrrd 2702 |
. . . . . . . 8
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥} ∈ ((ordTop‘𝑅) ↾t 𝐴)) |
| 50 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) = (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) |
| 51 | 49, 50 | fmptd 6385 |
. . . . . . 7
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}):(dom 𝑅 ∩ 𝐴)⟶((ordTop‘𝑅) ↾t 𝐴)) |
| 52 | | frn 6053 |
. . . . . . 7
⊢ ((𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}):(dom 𝑅 ∩ 𝐴)⟶((ordTop‘𝑅) ↾t 𝐴) → ran (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
| 53 | 51, 52 | syl 17 |
. . . . . 6
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → ran (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
| 54 | 27, 53 | eqsstrd 3639 |
. . . . 5
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
| 55 | | rabeq 3192 |
. . . . . . . . 9
⊢ (dom
(𝑅 ∩ (𝐴 × 𝐴)) = (dom 𝑅 ∩ 𝐴) → {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦} = {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) |
| 56 | 13, 55 | syl 17 |
. . . . . . . 8
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦} = {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) |
| 57 | 13, 56 | mpteq12dv 4733 |
. . . . . . 7
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) = (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦})) |
| 58 | 57 | rneqd 5353 |
. . . . . 6
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) = ran (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦})) |
| 59 | | inrab2 3900 |
. . . . . . . . . 10
⊢ ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝐴) = {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥𝑅𝑦} |
| 60 | | brinxp 5181 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 ↔ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦)) |
| 61 | 34, 31, 60 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) ∧ 𝑦 ∈ (dom 𝑅 ∩ 𝐴)) → (𝑥𝑅𝑦 ↔ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦)) |
| 62 | 61 | notbid 308 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) ∧ 𝑦 ∈ (dom 𝑅 ∩ 𝐴)) → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦)) |
| 63 | 62 | rabbidva 3188 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥𝑅𝑦} = {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) |
| 64 | 59, 63 | syl5eq 2668 |
. . . . . . . . 9
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝐴) = {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) |
| 65 | 11 | ordtopn2 20999 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅)) |
| 66 | 42, 44, 65 | syl2an 494 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅)) |
| 67 | | elrestr 16089 |
. . . . . . . . . 10
⊢
(((ordTop‘𝑅)
∈ Top ∧ 𝐴 ∈
𝑉 ∧ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∈ (ordTop‘𝑅)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴)) |
| 68 | 40, 41, 66, 67 | syl3anc 1326 |
. . . . . . . . 9
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → ({𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦} ∩ 𝐴) ∈ ((ordTop‘𝑅) ↾t 𝐴)) |
| 69 | 64, 68 | eqeltrrd 2702 |
. . . . . . . 8
⊢ (((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (dom 𝑅 ∩ 𝐴)) → {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦} ∈ ((ordTop‘𝑅) ↾t 𝐴)) |
| 70 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) = (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) |
| 71 | 69, 70 | fmptd 6385 |
. . . . . . 7
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}):(dom 𝑅 ∩ 𝐴)⟶((ordTop‘𝑅) ↾t 𝐴)) |
| 72 | | frn 6053 |
. . . . . . 7
⊢ ((𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}):(dom 𝑅 ∩ 𝐴)⟶((ordTop‘𝑅) ↾t 𝐴) → ran (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
| 73 | 71, 72 | syl 17 |
. . . . . 6
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → ran (𝑥 ∈ (dom 𝑅 ∩ 𝐴) ↦ {𝑦 ∈ (dom 𝑅 ∩ 𝐴) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
| 74 | 58, 73 | eqsstrd 3639 |
. . . . 5
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
| 75 | 54, 74 | unssd 3789 |
. . . 4
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦})) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
| 76 | 23, 75 | unssd 3789 |
. . 3
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → ({dom (𝑅 ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
| 77 | | tgfiss 20795 |
. . 3
⊢
((((ordTop‘𝑅)
↾t 𝐴)
∈ Top ∧ ({dom (𝑅
∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) → (topGen‘(fi‘({dom
(𝑅 ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))))) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
| 78 | 10, 76, 77 | syl2anc 693 |
. 2
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (topGen‘(fi‘({dom
(𝑅 ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦}))))) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |
| 79 | 7, 78 | eqsstrd 3639 |
1
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑉) → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘𝑅) ↾t 𝐴)) |