Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclfinN Structured version   Visualization version   GIF version

Theorem pclfinN 35186
Description: The projective subspace closure of a set equals the union of the closures of its finite subsets. Analogous to Lemma 3.3.6 of [PtakPulmannova] p. 72. Compare the closed subspace version pclfinclN 35236. (Contributed by NM, 10-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfin.a 𝐴 = (Atoms‘𝐾)
pclfin.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclfinN ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑈𝑋) = 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑈   𝑦,𝐾   𝑦,𝑋

Proof of Theorem pclfinN
Dummy variables 𝑞 𝑝 𝑟 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → 𝐾 ∈ AtLat)
2 elin 3796 . . . . . . . 8 (𝑦 ∈ (Fin ∩ 𝒫 𝑋) ↔ (𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋))
3 elpwi 4168 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
43adantl 482 . . . . . . . 8 ((𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋) → 𝑦𝑋)
52, 4sylbi 207 . . . . . . 7 (𝑦 ∈ (Fin ∩ 𝒫 𝑋) → 𝑦𝑋)
6 simpll 790 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑦𝑋) → 𝐾 ∈ AtLat)
7 sstr 3611 . . . . . . . . . . . 12 ((𝑦𝑋𝑋𝐴) → 𝑦𝐴)
87ancoms 469 . . . . . . . . . . 11 ((𝑋𝐴𝑦𝑋) → 𝑦𝐴)
98adantll 750 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑦𝑋) → 𝑦𝐴)
10 pclfin.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
11 eqid 2622 . . . . . . . . . . 11 (PSubSp‘𝐾) = (PSubSp‘𝐾)
12 pclfin.c . . . . . . . . . . 11 𝑈 = (PCl‘𝐾)
1310, 11, 12pclclN 35177 . . . . . . . . . 10 ((𝐾 ∈ AtLat ∧ 𝑦𝐴) → (𝑈𝑦) ∈ (PSubSp‘𝐾))
146, 9, 13syl2anc 693 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑦𝑋) → (𝑈𝑦) ∈ (PSubSp‘𝐾))
1510, 11psubssat 35040 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ (𝑈𝑦) ∈ (PSubSp‘𝐾)) → (𝑈𝑦) ⊆ 𝐴)
166, 14, 15syl2anc 693 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑦𝑋) → (𝑈𝑦) ⊆ 𝐴)
1716ex 450 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑦𝑋 → (𝑈𝑦) ⊆ 𝐴))
185, 17syl5 34 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑦 ∈ (Fin ∩ 𝒫 𝑋) → (𝑈𝑦) ⊆ 𝐴))
1918ralrimiv 2965 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → ∀𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ⊆ 𝐴)
20 iunss 4561 . . . . 5 ( 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ⊆ 𝐴 ↔ ∀𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ⊆ 𝐴)
2119, 20sylibr 224 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ⊆ 𝐴)
22 eliun 4524 . . . . . . . . 9 (𝑝 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑝 ∈ (𝑈𝑦))
23 fveq2 6191 . . . . . . . . . . 11 (𝑦 = 𝑤 → (𝑈𝑦) = (𝑈𝑤))
2423eleq2d 2687 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝑝 ∈ (𝑈𝑦) ↔ 𝑝 ∈ (𝑈𝑤)))
2524cbvrexv 3172 . . . . . . . . 9 (∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑝 ∈ (𝑈𝑦) ↔ ∃𝑤 ∈ (Fin ∩ 𝒫 𝑋)𝑝 ∈ (𝑈𝑤))
2622, 25bitri 264 . . . . . . . 8 (𝑝 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ↔ ∃𝑤 ∈ (Fin ∩ 𝒫 𝑋)𝑝 ∈ (𝑈𝑤))
27 eliun 4524 . . . . . . . . 9 (𝑞 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑦))
28 fveq2 6191 . . . . . . . . . . 11 (𝑦 = 𝑣 → (𝑈𝑦) = (𝑈𝑣))
2928eleq2d 2687 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝑞 ∈ (𝑈𝑦) ↔ 𝑞 ∈ (𝑈𝑣)))
3029cbvrexv 3172 . . . . . . . . 9 (∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑦) ↔ ∃𝑣 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑣))
3127, 30bitri 264 . . . . . . . 8 (𝑞 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ↔ ∃𝑣 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑣))
3226, 31anbi12i 733 . . . . . . 7 ((𝑝 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ∧ 𝑞 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)) ↔ (∃𝑤 ∈ (Fin ∩ 𝒫 𝑋)𝑝 ∈ (𝑈𝑤) ∧ ∃𝑣 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑣)))
33 elin 3796 . . . . . . . . . . 11 (𝑤 ∈ (Fin ∩ 𝒫 𝑋) ↔ (𝑤 ∈ Fin ∧ 𝑤 ∈ 𝒫 𝑋))
34 elpwi 4168 . . . . . . . . . . . 12 (𝑤 ∈ 𝒫 𝑋𝑤𝑋)
3534anim2i 593 . . . . . . . . . . 11 ((𝑤 ∈ Fin ∧ 𝑤 ∈ 𝒫 𝑋) → (𝑤 ∈ Fin ∧ 𝑤𝑋))
3633, 35sylbi 207 . . . . . . . . . 10 (𝑤 ∈ (Fin ∩ 𝒫 𝑋) → (𝑤 ∈ Fin ∧ 𝑤𝑋))
37 elin 3796 . . . . . . . . . . . . . 14 (𝑣 ∈ (Fin ∩ 𝒫 𝑋) ↔ (𝑣 ∈ Fin ∧ 𝑣 ∈ 𝒫 𝑋))
38 elpwi 4168 . . . . . . . . . . . . . . 15 (𝑣 ∈ 𝒫 𝑋𝑣𝑋)
3938anim2i 593 . . . . . . . . . . . . . 14 ((𝑣 ∈ Fin ∧ 𝑣 ∈ 𝒫 𝑋) → (𝑣 ∈ Fin ∧ 𝑣𝑋))
4037, 39sylbi 207 . . . . . . . . . . . . 13 (𝑣 ∈ (Fin ∩ 𝒫 𝑋) → (𝑣 ∈ Fin ∧ 𝑣𝑋))
41 simp2rl 1130 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑤 ∈ Fin)
42 simp12l 1174 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑣 ∈ Fin)
43 unfi 8227 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ Fin ∧ 𝑣 ∈ Fin) → (𝑤𝑣) ∈ Fin)
4441, 42, 43syl2anc 693 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → (𝑤𝑣) ∈ Fin)
45 simp2rr 1131 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑤𝑋)
46 simp12r 1175 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑣𝑋)
4745, 46unssd 3789 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → (𝑤𝑣) ⊆ 𝑋)
48 vex 3203 . . . . . . . . . . . . . . . . . . . . . 22 𝑤 ∈ V
49 vex 3203 . . . . . . . . . . . . . . . . . . . . . 22 𝑣 ∈ V
5048, 49unex 6956 . . . . . . . . . . . . . . . . . . . . 21 (𝑤𝑣) ∈ V
5150elpw 4164 . . . . . . . . . . . . . . . . . . . 20 ((𝑤𝑣) ∈ 𝒫 𝑋 ↔ (𝑤𝑣) ⊆ 𝑋)
5247, 51sylibr 224 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → (𝑤𝑣) ∈ 𝒫 𝑋)
5344, 52elind 3798 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → (𝑤𝑣) ∈ (Fin ∩ 𝒫 𝑋))
54 simp11l 1172 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝐾 ∈ AtLat)
55 simp11r 1173 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑋𝐴)
5645, 55sstrd 3613 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑤𝐴)
5746, 55sstrd 3613 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑣𝐴)
5856, 57unssd 3789 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → (𝑤𝑣) ⊆ 𝐴)
5910, 11, 12pclclN 35177 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ AtLat ∧ (𝑤𝑣) ⊆ 𝐴) → (𝑈‘(𝑤𝑣)) ∈ (PSubSp‘𝐾))
6054, 58, 59syl2anc 693 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → (𝑈‘(𝑤𝑣)) ∈ (PSubSp‘𝐾))
61 simp3l 1089 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑟𝐴)
62 ssun1 3776 . . . . . . . . . . . . . . . . . . . . . 22 𝑤 ⊆ (𝑤𝑣)
6362a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑤 ⊆ (𝑤𝑣))
6410, 12pclssN 35180 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ AtLat ∧ 𝑤 ⊆ (𝑤𝑣) ∧ (𝑤𝑣) ⊆ 𝐴) → (𝑈𝑤) ⊆ (𝑈‘(𝑤𝑣)))
6554, 63, 58, 64syl3anc 1326 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → (𝑈𝑤) ⊆ (𝑈‘(𝑤𝑣)))
66 simp2l 1087 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑝 ∈ (𝑈𝑤))
6765, 66sseldd 3604 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑝 ∈ (𝑈‘(𝑤𝑣)))
68 ssun2 3777 . . . . . . . . . . . . . . . . . . . . . 22 𝑣 ⊆ (𝑤𝑣)
6968a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑣 ⊆ (𝑤𝑣))
7010, 12pclssN 35180 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ AtLat ∧ 𝑣 ⊆ (𝑤𝑣) ∧ (𝑤𝑣) ⊆ 𝐴) → (𝑈𝑣) ⊆ (𝑈‘(𝑤𝑣)))
7154, 69, 58, 70syl3anc 1326 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → (𝑈𝑣) ⊆ (𝑈‘(𝑤𝑣)))
72 simp13 1093 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑞 ∈ (𝑈𝑣))
7371, 72sseldd 3604 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑞 ∈ (𝑈‘(𝑤𝑣)))
74 simp3r 1090 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))
75 eqid 2622 . . . . . . . . . . . . . . . . . . . 20 (le‘𝐾) = (le‘𝐾)
76 eqid 2622 . . . . . . . . . . . . . . . . . . . 20 (join‘𝐾) = (join‘𝐾)
7775, 76, 10, 11psubspi2N 35034 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ AtLat ∧ (𝑈‘(𝑤𝑣)) ∈ (PSubSp‘𝐾) ∧ 𝑟𝐴) ∧ (𝑝 ∈ (𝑈‘(𝑤𝑣)) ∧ 𝑞 ∈ (𝑈‘(𝑤𝑣)) ∧ 𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑟 ∈ (𝑈‘(𝑤𝑣)))
7854, 60, 61, 67, 73, 74, 77syl33anc 1341 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑟 ∈ (𝑈‘(𝑤𝑣)))
79 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑤𝑣) → (𝑈𝑦) = (𝑈‘(𝑤𝑣)))
8079eleq2d 2687 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑤𝑣) → (𝑟 ∈ (𝑈𝑦) ↔ 𝑟 ∈ (𝑈‘(𝑤𝑣))))
8180rspcev 3309 . . . . . . . . . . . . . . . . . 18 (((𝑤𝑣) ∈ (Fin ∩ 𝒫 𝑋) ∧ 𝑟 ∈ (𝑈‘(𝑤𝑣))) → ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑟 ∈ (𝑈𝑦))
8253, 78, 81syl2anc 693 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑟 ∈ (𝑈𝑦))
83 eliun 4524 . . . . . . . . . . . . . . . . 17 (𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑟 ∈ (𝑈𝑦))
8482, 83sylibr 224 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))
85843exp 1264 . . . . . . . . . . . . . . 15 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) → ((𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) → ((𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞)) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))))
8685exp5c 644 . . . . . . . . . . . . . 14 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) → (𝑝 ∈ (𝑈𝑤) → ((𝑤 ∈ Fin ∧ 𝑤𝑋) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))))))
87863exp 1264 . . . . . . . . . . . . 13 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → ((𝑣 ∈ Fin ∧ 𝑣𝑋) → (𝑞 ∈ (𝑈𝑣) → (𝑝 ∈ (𝑈𝑤) → ((𝑤 ∈ Fin ∧ 𝑤𝑋) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))))))))
8840, 87syl5 34 . . . . . . . . . . . 12 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑣 ∈ (Fin ∩ 𝒫 𝑋) → (𝑞 ∈ (𝑈𝑣) → (𝑝 ∈ (𝑈𝑤) → ((𝑤 ∈ Fin ∧ 𝑤𝑋) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))))))))
8988rexlimdv 3030 . . . . . . . . . . 11 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (∃𝑣 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑣) → (𝑝 ∈ (𝑈𝑤) → ((𝑤 ∈ Fin ∧ 𝑤𝑋) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))))))
9089com24 95 . . . . . . . . . 10 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → ((𝑤 ∈ Fin ∧ 𝑤𝑋) → (𝑝 ∈ (𝑈𝑤) → (∃𝑣 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑣) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))))))
9136, 90syl5 34 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑤 ∈ (Fin ∩ 𝒫 𝑋) → (𝑝 ∈ (𝑈𝑤) → (∃𝑣 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑣) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))))))
9291rexlimdv 3030 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (∃𝑤 ∈ (Fin ∩ 𝒫 𝑋)𝑝 ∈ (𝑈𝑤) → (∃𝑣 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑣) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))))))
9392impd 447 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → ((∃𝑤 ∈ (Fin ∩ 𝒫 𝑋)𝑝 ∈ (𝑈𝑤) ∧ ∃𝑣 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑣)) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))))
9432, 93syl5bi 232 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → ((𝑝 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ∧ 𝑞 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))))
9594ralrimdv 2968 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → ((𝑝 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ∧ 𝑞 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)) → ∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))))
9695ralrimivv 2970 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → ∀𝑝 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)∀𝑞 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))
9775, 76, 10, 11ispsubsp 35031 . . . . 5 (𝐾 ∈ AtLat → ( 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ∈ (PSubSp‘𝐾) ↔ ( 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ⊆ 𝐴 ∧ ∀𝑝 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)∀𝑞 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))))
9897adantr 481 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → ( 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ∈ (PSubSp‘𝐾) ↔ ( 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ⊆ 𝐴 ∧ ∀𝑝 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)∀𝑞 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))))
9921, 96, 98mpbir2and 957 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ∈ (PSubSp‘𝐾))
100 snfi 8038 . . . . . . . . 9 {𝑤} ∈ Fin
101100a1i 11 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑤𝑋) → {𝑤} ∈ Fin)
102 snelpwi 4912 . . . . . . . . 9 (𝑤𝑋 → {𝑤} ∈ 𝒫 𝑋)
103102adantl 482 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑤𝑋) → {𝑤} ∈ 𝒫 𝑋)
104101, 103elind 3798 . . . . . . 7 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑤𝑋) → {𝑤} ∈ (Fin ∩ 𝒫 𝑋))
105 vsnid 4209 . . . . . . . 8 𝑤 ∈ {𝑤}
106 simpll 790 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑤𝑋) → 𝐾 ∈ AtLat)
107 ssel2 3598 . . . . . . . . . . 11 ((𝑋𝐴𝑤𝑋) → 𝑤𝐴)
108107adantll 750 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑤𝑋) → 𝑤𝐴)
10910, 11snatpsubN 35036 . . . . . . . . . 10 ((𝐾 ∈ AtLat ∧ 𝑤𝐴) → {𝑤} ∈ (PSubSp‘𝐾))
110106, 108, 109syl2anc 693 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑤𝑋) → {𝑤} ∈ (PSubSp‘𝐾))
11111, 12pclidN 35182 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ {𝑤} ∈ (PSubSp‘𝐾)) → (𝑈‘{𝑤}) = {𝑤})
112106, 110, 111syl2anc 693 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑤𝑋) → (𝑈‘{𝑤}) = {𝑤})
113105, 112syl5eleqr 2708 . . . . . . 7 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑤𝑋) → 𝑤 ∈ (𝑈‘{𝑤}))
114 fveq2 6191 . . . . . . . . 9 (𝑦 = {𝑤} → (𝑈𝑦) = (𝑈‘{𝑤}))
115114eleq2d 2687 . . . . . . . 8 (𝑦 = {𝑤} → (𝑤 ∈ (𝑈𝑦) ↔ 𝑤 ∈ (𝑈‘{𝑤})))
116115rspcev 3309 . . . . . . 7 (({𝑤} ∈ (Fin ∩ 𝒫 𝑋) ∧ 𝑤 ∈ (𝑈‘{𝑤})) → ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑤 ∈ (𝑈𝑦))
117104, 113, 116syl2anc 693 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑤𝑋) → ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑤 ∈ (𝑈𝑦))
118117ex 450 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑤𝑋 → ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑤 ∈ (𝑈𝑦)))
119 eliun 4524 . . . . 5 (𝑤 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑤 ∈ (𝑈𝑦))
120118, 119syl6ibr 242 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑤𝑋𝑤 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))
121120ssrdv 3609 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → 𝑋 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))
122 simpr 477 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑦𝑋) → 𝑦𝑋)
123 simplr 792 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑦𝑋) → 𝑋𝐴)
12410, 12pclssN 35180 . . . . . . . . . 10 ((𝐾 ∈ AtLat ∧ 𝑦𝑋𝑋𝐴) → (𝑈𝑦) ⊆ (𝑈𝑋))
1256, 122, 123, 124syl3anc 1326 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑦𝑋) → (𝑈𝑦) ⊆ (𝑈𝑋))
126125sseld 3602 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑦𝑋) → (𝑤 ∈ (𝑈𝑦) → 𝑤 ∈ (𝑈𝑋)))
127126ex 450 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑦𝑋 → (𝑤 ∈ (𝑈𝑦) → 𝑤 ∈ (𝑈𝑋))))
1285, 127syl5 34 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑦 ∈ (Fin ∩ 𝒫 𝑋) → (𝑤 ∈ (𝑈𝑦) → 𝑤 ∈ (𝑈𝑋))))
129128rexlimdv 3030 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑤 ∈ (𝑈𝑦) → 𝑤 ∈ (𝑈𝑋)))
130119, 129syl5bi 232 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑤 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) → 𝑤 ∈ (𝑈𝑋)))
131130ssrdv 3609 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ⊆ (𝑈𝑋))
13211, 12pclbtwnN 35183 . . 3 (((𝐾 ∈ AtLat ∧ 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ∈ (PSubSp‘𝐾)) ∧ (𝑋 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ∧ 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ⊆ (𝑈𝑋))) → 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) = (𝑈𝑋))
1331, 99, 121, 131, 132syl22anc 1327 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) = (𝑈𝑋))
134133eqcomd 2628 1 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑈𝑋) = 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  cun 3572  cin 3573  wss 3574  𝒫 cpw 4158  {csn 4177   ciun 4520   class class class wbr 4653  cfv 5888  (class class class)co 6650  Fincfn 7955  lecple 15948  joincjn 16944  Atomscatm 34550  AtLatcal 34551  PSubSpcpsubsp 34782  PClcpclN 35173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-covers 34553  df-ats 34554  df-atl 34585  df-psubsp 34789  df-pclN 35174
This theorem is referenced by:  pclcmpatN  35187
  Copyright terms: Public domain W3C validator