| Step | Hyp | Ref
| Expression |
| 1 | | wemapwe.u |
. . . . . . . . 9
⊢ 𝑈 = {𝑥 ∈ (𝐵 ↑𝑚 𝐴) ∣ 𝑥 finSupp 𝑍} |
| 2 | | eqid 2622 |
. . . . . . . . 9
⊢ {𝑥 ∈ (dom 𝐺 ↑𝑚 dom 𝐹) ∣ 𝑥 finSupp (◡𝐺‘𝑍)} = {𝑥 ∈ (dom 𝐺 ↑𝑚 dom 𝐹) ∣ 𝑥 finSupp (◡𝐺‘𝑍)} |
| 3 | | eqid 2622 |
. . . . . . . . 9
⊢ (◡𝐺‘𝑍) = (◡𝐺‘𝑍) |
| 4 | | simprr 796 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → 𝐴 ∈ V) |
| 5 | | wemapwe.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 We 𝐴) |
| 6 | 5 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → 𝑅 We 𝐴) |
| 7 | | wemapwe.5 |
. . . . . . . . . . . 12
⊢ 𝐹 = OrdIso(𝑅, 𝐴) |
| 8 | 7 | oiiso 8442 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ V ∧ 𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) |
| 9 | 4, 6, 8 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) |
| 10 | | isof1o 6573 |
. . . . . . . . . 10
⊢ (𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴) → 𝐹:dom 𝐹–1-1-onto→𝐴) |
| 11 | 9, 10 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → 𝐹:dom 𝐹–1-1-onto→𝐴) |
| 12 | | simprl 794 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → 𝐵 ∈ V) |
| 13 | | wemapwe.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 We 𝐵) |
| 14 | 13 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → 𝑆 We 𝐵) |
| 15 | | wemapwe.6 |
. . . . . . . . . . . 12
⊢ 𝐺 = OrdIso(𝑆, 𝐵) |
| 16 | 15 | oiiso 8442 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ V ∧ 𝑆 We 𝐵) → 𝐺 Isom E , 𝑆 (dom 𝐺, 𝐵)) |
| 17 | 12, 14, 16 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → 𝐺 Isom E , 𝑆 (dom 𝐺, 𝐵)) |
| 18 | | isof1o 6573 |
. . . . . . . . . 10
⊢ (𝐺 Isom E , 𝑆 (dom 𝐺, 𝐵) → 𝐺:dom 𝐺–1-1-onto→𝐵) |
| 19 | | f1ocnv 6149 |
. . . . . . . . . 10
⊢ (𝐺:dom 𝐺–1-1-onto→𝐵 → ◡𝐺:𝐵–1-1-onto→dom
𝐺) |
| 20 | 17, 18, 19 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → ◡𝐺:𝐵–1-1-onto→dom
𝐺) |
| 21 | 7 | oiexg 8440 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → 𝐹 ∈ V) |
| 22 | 21 | ad2antll 765 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → 𝐹 ∈ V) |
| 23 | | dmexg 7097 |
. . . . . . . . . 10
⊢ (𝐹 ∈ V → dom 𝐹 ∈ V) |
| 24 | 22, 23 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → dom 𝐹 ∈ V) |
| 25 | 15 | oiexg 8440 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ V → 𝐺 ∈ V) |
| 26 | 25 | ad2antrl 764 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → 𝐺 ∈ V) |
| 27 | | dmexg 7097 |
. . . . . . . . . 10
⊢ (𝐺 ∈ V → dom 𝐺 ∈ V) |
| 28 | 26, 27 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → dom 𝐺 ∈ V) |
| 29 | | wemapwe.7 |
. . . . . . . . . 10
⊢ 𝑍 = (𝐺‘∅) |
| 30 | 17, 18 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → 𝐺:dom 𝐺–1-1-onto→𝐵) |
| 31 | | f1ofo 6144 |
. . . . . . . . . . . . . . 15
⊢ (𝐺:dom 𝐺–1-1-onto→𝐵 → 𝐺:dom 𝐺–onto→𝐵) |
| 32 | | forn 6118 |
. . . . . . . . . . . . . . 15
⊢ (𝐺:dom 𝐺–onto→𝐵 → ran 𝐺 = 𝐵) |
| 33 | 30, 31, 32 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → ran 𝐺 = 𝐵) |
| 34 | | wemapwe.4 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ≠ ∅) |
| 35 | 34 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → 𝐵 ≠ ∅) |
| 36 | 33, 35 | eqnetrd 2861 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → ran 𝐺 ≠ ∅) |
| 37 | | dm0rn0 5342 |
. . . . . . . . . . . . . 14
⊢ (dom
𝐺 = ∅ ↔ ran
𝐺 =
∅) |
| 38 | 37 | necon3bii 2846 |
. . . . . . . . . . . . 13
⊢ (dom
𝐺 ≠ ∅ ↔ ran
𝐺 ≠
∅) |
| 39 | 36, 38 | sylibr 224 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → dom 𝐺 ≠ ∅) |
| 40 | 15 | oicl 8434 |
. . . . . . . . . . . . 13
⊢ Ord dom
𝐺 |
| 41 | | ord0eln0 5779 |
. . . . . . . . . . . . 13
⊢ (Ord dom
𝐺 → (∅ ∈
dom 𝐺 ↔ dom 𝐺 ≠ ∅)) |
| 42 | 40, 41 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (∅
∈ dom 𝐺 ↔ dom
𝐺 ≠
∅) |
| 43 | 39, 42 | sylibr 224 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → ∅ ∈ dom 𝐺) |
| 44 | 15 | oif 8435 |
. . . . . . . . . . . 12
⊢ 𝐺:dom 𝐺⟶𝐵 |
| 45 | 44 | ffvelrni 6358 |
. . . . . . . . . . 11
⊢ (∅
∈ dom 𝐺 → (𝐺‘∅) ∈ 𝐵) |
| 46 | 43, 45 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → (𝐺‘∅) ∈ 𝐵) |
| 47 | 29, 46 | syl5eqel 2705 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → 𝑍 ∈ 𝐵) |
| 48 | 1, 2, 3, 11, 20, 4, 12, 24, 28, 47 | mapfien 8313 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → (𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹))):𝑈–1-1-onto→{𝑥 ∈ (dom 𝐺 ↑𝑚 dom 𝐹) ∣ 𝑥 finSupp (◡𝐺‘𝑍)}) |
| 49 | | eqid 2622 |
. . . . . . . . . . 11
⊢ {𝑥 ∈ (dom 𝐺 ↑𝑚 dom 𝐹) ∣ 𝑥 finSupp ∅} = {𝑥 ∈ (dom 𝐺 ↑𝑚 dom 𝐹) ∣ 𝑥 finSupp ∅} |
| 50 | 15 | oion 8441 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ V → dom 𝐺 ∈ On) |
| 51 | 50 | ad2antrl 764 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → dom 𝐺 ∈ On) |
| 52 | 7 | oion 8441 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ V → dom 𝐹 ∈ On) |
| 53 | 52 | ad2antll 765 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → dom 𝐹 ∈ On) |
| 54 | 49, 51, 53 | cantnfdm 8561 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → dom (dom 𝐺 CNF dom 𝐹) = {𝑥 ∈ (dom 𝐺 ↑𝑚 dom 𝐹) ∣ 𝑥 finSupp ∅}) |
| 55 | 29 | fveq2i 6194 |
. . . . . . . . . . . . 13
⊢ (◡𝐺‘𝑍) = (◡𝐺‘(𝐺‘∅)) |
| 56 | | f1ocnvfv1 6532 |
. . . . . . . . . . . . . 14
⊢ ((𝐺:dom 𝐺–1-1-onto→𝐵 ∧ ∅ ∈ dom 𝐺) → (◡𝐺‘(𝐺‘∅)) = ∅) |
| 57 | 30, 43, 56 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → (◡𝐺‘(𝐺‘∅)) = ∅) |
| 58 | 55, 57 | syl5eq 2668 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → (◡𝐺‘𝑍) = ∅) |
| 59 | 58 | breq2d 4665 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → (𝑥 finSupp (◡𝐺‘𝑍) ↔ 𝑥 finSupp ∅)) |
| 60 | 59 | rabbidv 3189 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → {𝑥 ∈ (dom 𝐺 ↑𝑚 dom 𝐹) ∣ 𝑥 finSupp (◡𝐺‘𝑍)} = {𝑥 ∈ (dom 𝐺 ↑𝑚 dom 𝐹) ∣ 𝑥 finSupp ∅}) |
| 61 | 54, 60 | eqtr4d 2659 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → dom (dom 𝐺 CNF dom 𝐹) = {𝑥 ∈ (dom 𝐺 ↑𝑚 dom 𝐹) ∣ 𝑥 finSupp (◡𝐺‘𝑍)}) |
| 62 | | f1oeq3 6129 |
. . . . . . . . 9
⊢ (dom (dom
𝐺 CNF dom 𝐹) = {𝑥 ∈ (dom 𝐺 ↑𝑚 dom 𝐹) ∣ 𝑥 finSupp (◡𝐺‘𝑍)} → ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹))):𝑈–1-1-onto→dom
(dom 𝐺 CNF dom 𝐹) ↔ (𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹))):𝑈–1-1-onto→{𝑥 ∈ (dom 𝐺 ↑𝑚 dom 𝐹) ∣ 𝑥 finSupp (◡𝐺‘𝑍)})) |
| 63 | 61, 62 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹))):𝑈–1-1-onto→dom
(dom 𝐺 CNF dom 𝐹) ↔ (𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹))):𝑈–1-1-onto→{𝑥 ∈ (dom 𝐺 ↑𝑚 dom 𝐹) ∣ 𝑥 finSupp (◡𝐺‘𝑍)})) |
| 64 | 48, 63 | mpbird 247 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → (𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹))):𝑈–1-1-onto→dom
(dom 𝐺 CNF dom 𝐹)) |
| 65 | | eqid 2622 |
. . . . . . . . 9
⊢ dom (dom
𝐺 CNF dom 𝐹) = dom (dom 𝐺 CNF dom 𝐹) |
| 66 | | eqid 2622 |
. . . . . . . . 9
⊢
{〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} |
| 67 | 65, 51, 53, 66 | oemapwe 8591 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → ({〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} We dom (dom 𝐺 CNF dom 𝐹) ∧ dom OrdIso({〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))}, dom (dom 𝐺 CNF dom 𝐹)) = (dom 𝐺 ↑𝑜 dom 𝐹))) |
| 68 | 67 | simpld 475 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} We dom (dom 𝐺 CNF dom 𝐹)) |
| 69 | | eqid 2622 |
. . . . . . . 8
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑥){〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑦)} = {〈𝑥, 𝑦〉 ∣ ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑥){〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑦)} |
| 70 | 69 | f1owe 6603 |
. . . . . . 7
⊢ ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹))):𝑈–1-1-onto→dom
(dom 𝐺 CNF dom 𝐹) → ({〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} We dom (dom 𝐺 CNF dom 𝐹) → {〈𝑥, 𝑦〉 ∣ ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑥){〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑦)} We 𝑈)) |
| 71 | 64, 68, 70 | sylc 65 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → {〈𝑥, 𝑦〉 ∣ ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑥){〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑦)} We 𝑈) |
| 72 | | weinxp 5186 |
. . . . . 6
⊢
({〈𝑥, 𝑦〉 ∣ ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑥){〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑦)} We 𝑈 ↔ ({〈𝑥, 𝑦〉 ∣ ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑥){〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑦)} ∩ (𝑈 × 𝑈)) We 𝑈) |
| 73 | 71, 72 | sylib 208 |
. . . . 5
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → ({〈𝑥, 𝑦〉 ∣ ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑥){〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑦)} ∩ (𝑈 × 𝑈)) We 𝑈) |
| 74 | 11 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝐹:dom 𝐹–1-1-onto→𝐴) |
| 75 | | f1ofn 6138 |
. . . . . . . . . . . 12
⊢ (𝐹:dom 𝐹–1-1-onto→𝐴 → 𝐹 Fn dom 𝐹) |
| 76 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝐹‘𝑐) → (𝑥‘𝑧) = (𝑥‘(𝐹‘𝑐))) |
| 77 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝐹‘𝑐) → (𝑦‘𝑧) = (𝑦‘(𝐹‘𝑐))) |
| 78 | 76, 77 | breq12d 4666 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝐹‘𝑐) → ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ↔ (𝑥‘(𝐹‘𝑐))𝑆(𝑦‘(𝐹‘𝑐)))) |
| 79 | | breq1 4656 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝐹‘𝑐) → (𝑧𝑅𝑤 ↔ (𝐹‘𝑐)𝑅𝑤)) |
| 80 | 79 | imbi1d 331 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝐹‘𝑐) → ((𝑧𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ ((𝐹‘𝑐)𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))) |
| 81 | 80 | ralbidv 2986 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝐹‘𝑐) → (∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ ∀𝑤 ∈ 𝐴 ((𝐹‘𝑐)𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))) |
| 82 | 78, 81 | anbi12d 747 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝐹‘𝑐) → (((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ((𝑥‘(𝐹‘𝑐))𝑆(𝑦‘(𝐹‘𝑐)) ∧ ∀𝑤 ∈ 𝐴 ((𝐹‘𝑐)𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))) |
| 83 | 82 | rexrn 6361 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn dom 𝐹 → (∃𝑧 ∈ ran 𝐹((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ∃𝑐 ∈ dom 𝐹((𝑥‘(𝐹‘𝑐))𝑆(𝑦‘(𝐹‘𝑐)) ∧ ∀𝑤 ∈ 𝐴 ((𝐹‘𝑐)𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))) |
| 84 | 74, 75, 83 | 3syl 18 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (∃𝑧 ∈ ran 𝐹((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ∃𝑐 ∈ dom 𝐹((𝑥‘(𝐹‘𝑐))𝑆(𝑦‘(𝐹‘𝑐)) ∧ ∀𝑤 ∈ 𝐴 ((𝐹‘𝑐)𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))) |
| 85 | | f1ofo 6144 |
. . . . . . . . . . . . 13
⊢ (𝐹:dom 𝐹–1-1-onto→𝐴 → 𝐹:dom 𝐹–onto→𝐴) |
| 86 | | forn 6118 |
. . . . . . . . . . . . 13
⊢ (𝐹:dom 𝐹–onto→𝐴 → ran 𝐹 = 𝐴) |
| 87 | 74, 85, 86 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → ran 𝐹 = 𝐴) |
| 88 | 87 | rexeqdv 3145 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (∃𝑧 ∈ ran 𝐹((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))) |
| 89 | 26 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝐺 ∈ V) |
| 90 | | cnvexg 7112 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ V → ◡𝐺 ∈ V) |
| 91 | 89, 90 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → ◡𝐺 ∈ V) |
| 92 | | vex 3203 |
. . . . . . . . . . . . . . 15
⊢ 𝑥 ∈ V |
| 93 | 22 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝐹 ∈ V) |
| 94 | | coexg 7117 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ V ∧ 𝐹 ∈ V) → (𝑥 ∘ 𝐹) ∈ V) |
| 95 | 92, 93, 94 | sylancr 695 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (𝑥 ∘ 𝐹) ∈ V) |
| 96 | | coexg 7117 |
. . . . . . . . . . . . . 14
⊢ ((◡𝐺 ∈ V ∧ (𝑥 ∘ 𝐹) ∈ V) → (◡𝐺 ∘ (𝑥 ∘ 𝐹)) ∈ V) |
| 97 | 91, 95, 96 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (◡𝐺 ∘ (𝑥 ∘ 𝐹)) ∈ V) |
| 98 | | vex 3203 |
. . . . . . . . . . . . . . 15
⊢ 𝑦 ∈ V |
| 99 | | coexg 7117 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ V ∧ 𝐹 ∈ V) → (𝑦 ∘ 𝐹) ∈ V) |
| 100 | 98, 93, 99 | sylancr 695 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (𝑦 ∘ 𝐹) ∈ V) |
| 101 | | coexg 7117 |
. . . . . . . . . . . . . 14
⊢ ((◡𝐺 ∈ V ∧ (𝑦 ∘ 𝐹) ∈ V) → (◡𝐺 ∘ (𝑦 ∘ 𝐹)) ∈ V) |
| 102 | 91, 100, 101 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (◡𝐺 ∘ (𝑦 ∘ 𝐹)) ∈ V) |
| 103 | | fveq1 6190 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = (◡𝐺 ∘ (𝑥 ∘ 𝐹)) → (𝑎‘𝑐) = ((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑐)) |
| 104 | | fveq1 6190 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = (◡𝐺 ∘ (𝑦 ∘ 𝐹)) → (𝑏‘𝑐) = ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑐)) |
| 105 | | eleq12 2691 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑎‘𝑐) = ((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑐) ∧ (𝑏‘𝑐) = ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑐)) → ((𝑎‘𝑐) ∈ (𝑏‘𝑐) ↔ ((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑐) ∈ ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑐))) |
| 106 | 103, 104,
105 | syl2an 494 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 = (◡𝐺 ∘ (𝑥 ∘ 𝐹)) ∧ 𝑏 = (◡𝐺 ∘ (𝑦 ∘ 𝐹))) → ((𝑎‘𝑐) ∈ (𝑏‘𝑐) ↔ ((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑐) ∈ ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑐))) |
| 107 | | fveq1 6190 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = (◡𝐺 ∘ (𝑥 ∘ 𝐹)) → (𝑎‘𝑑) = ((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑑)) |
| 108 | | fveq1 6190 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = (◡𝐺 ∘ (𝑦 ∘ 𝐹)) → (𝑏‘𝑑) = ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑑)) |
| 109 | 107, 108 | eqeqan12d 2638 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑎 = (◡𝐺 ∘ (𝑥 ∘ 𝐹)) ∧ 𝑏 = (◡𝐺 ∘ (𝑦 ∘ 𝐹))) → ((𝑎‘𝑑) = (𝑏‘𝑑) ↔ ((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑑) = ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑑))) |
| 110 | 109 | imbi2d 330 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 = (◡𝐺 ∘ (𝑥 ∘ 𝐹)) ∧ 𝑏 = (◡𝐺 ∘ (𝑦 ∘ 𝐹))) → ((𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)) ↔ (𝑐 ∈ 𝑑 → ((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑑) = ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑑)))) |
| 111 | 110 | ralbidv 2986 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 = (◡𝐺 ∘ (𝑥 ∘ 𝐹)) ∧ 𝑏 = (◡𝐺 ∘ (𝑦 ∘ 𝐹))) → (∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)) ↔ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → ((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑑) = ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑑)))) |
| 112 | 106, 111 | anbi12d 747 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 = (◡𝐺 ∘ (𝑥 ∘ 𝐹)) ∧ 𝑏 = (◡𝐺 ∘ (𝑦 ∘ 𝐹))) → (((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑))) ↔ (((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑐) ∈ ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → ((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑑) = ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑑))))) |
| 113 | 112 | rexbidv 3052 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 = (◡𝐺 ∘ (𝑥 ∘ 𝐹)) ∧ 𝑏 = (◡𝐺 ∘ (𝑦 ∘ 𝐹))) → (∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑))) ↔ ∃𝑐 ∈ dom 𝐹(((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑐) ∈ ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → ((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑑) = ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑑))))) |
| 114 | 113, 66 | brabga 4989 |
. . . . . . . . . . . . 13
⊢ (((◡𝐺 ∘ (𝑥 ∘ 𝐹)) ∈ V ∧ (◡𝐺 ∘ (𝑦 ∘ 𝐹)) ∈ V) → ((◡𝐺 ∘ (𝑥 ∘ 𝐹)){〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} (◡𝐺 ∘ (𝑦 ∘ 𝐹)) ↔ ∃𝑐 ∈ dom 𝐹(((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑐) ∈ ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → ((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑑) = ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑑))))) |
| 115 | 97, 102, 114 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → ((◡𝐺 ∘ (𝑥 ∘ 𝐹)){〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} (◡𝐺 ∘ (𝑦 ∘ 𝐹)) ↔ ∃𝑐 ∈ dom 𝐹(((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑐) ∈ ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → ((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑑) = ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑑))))) |
| 116 | | simprl 794 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑥 ∈ 𝑈) |
| 117 | | coeq1 5279 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑥 → (𝑓 ∘ 𝐹) = (𝑥 ∘ 𝐹)) |
| 118 | 117 | coeq2d 5284 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑥 → (◡𝐺 ∘ (𝑓 ∘ 𝐹)) = (◡𝐺 ∘ (𝑥 ∘ 𝐹))) |
| 119 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹))) = (𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹))) |
| 120 | 118, 119 | fvmptg 6280 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝑈 ∧ (◡𝐺 ∘ (𝑥 ∘ 𝐹)) ∈ V) → ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑥) = (◡𝐺 ∘ (𝑥 ∘ 𝐹))) |
| 121 | 116, 97, 120 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑥) = (◡𝐺 ∘ (𝑥 ∘ 𝐹))) |
| 122 | | simprr 796 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑦 ∈ 𝑈) |
| 123 | | coeq1 5279 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑦 → (𝑓 ∘ 𝐹) = (𝑦 ∘ 𝐹)) |
| 124 | 123 | coeq2d 5284 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑦 → (◡𝐺 ∘ (𝑓 ∘ 𝐹)) = (◡𝐺 ∘ (𝑦 ∘ 𝐹))) |
| 125 | 124, 119 | fvmptg 6280 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝑈 ∧ (◡𝐺 ∘ (𝑦 ∘ 𝐹)) ∈ V) → ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑦) = (◡𝐺 ∘ (𝑦 ∘ 𝐹))) |
| 126 | 122, 102,
125 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑦) = (◡𝐺 ∘ (𝑦 ∘ 𝐹))) |
| 127 | 121, 126 | breq12d 4666 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑥){〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑦) ↔ (◡𝐺 ∘ (𝑥 ∘ 𝐹)){〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} (◡𝐺 ∘ (𝑦 ∘ 𝐹)))) |
| 128 | 17 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ 𝑐 ∈ dom 𝐹) → 𝐺 Isom E , 𝑆 (dom 𝐺, 𝐵)) |
| 129 | | isocnv 6580 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 Isom E , 𝑆 (dom 𝐺, 𝐵) → ◡𝐺 Isom 𝑆, E (𝐵, dom 𝐺)) |
| 130 | 128, 129 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ 𝑐 ∈ dom 𝐹) → ◡𝐺 Isom 𝑆, E (𝐵, dom 𝐺)) |
| 131 | | ssrab2 3687 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {𝑥 ∈ (𝐵 ↑𝑚 𝐴) ∣ 𝑥 finSupp 𝑍} ⊆ (𝐵 ↑𝑚 𝐴) |
| 132 | 1, 131 | eqsstri 3635 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑈 ⊆ (𝐵 ↑𝑚 𝐴) |
| 133 | 132, 116 | sseldi 3601 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑥 ∈ (𝐵 ↑𝑚 𝐴)) |
| 134 | | elmapi 7879 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (𝐵 ↑𝑚 𝐴) → 𝑥:𝐴⟶𝐵) |
| 135 | 133, 134 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑥:𝐴⟶𝐵) |
| 136 | 7 | oif 8435 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐹:dom 𝐹⟶𝐴 |
| 137 | 136 | ffvelrni 6358 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 ∈ dom 𝐹 → (𝐹‘𝑐) ∈ 𝐴) |
| 138 | | ffvelrn 6357 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥:𝐴⟶𝐵 ∧ (𝐹‘𝑐) ∈ 𝐴) → (𝑥‘(𝐹‘𝑐)) ∈ 𝐵) |
| 139 | 135, 137,
138 | syl2an 494 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ 𝑐 ∈ dom 𝐹) → (𝑥‘(𝐹‘𝑐)) ∈ 𝐵) |
| 140 | 132, 122 | sseldi 3601 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑦 ∈ (𝐵 ↑𝑚 𝐴)) |
| 141 | | elmapi 7879 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (𝐵 ↑𝑚 𝐴) → 𝑦:𝐴⟶𝐵) |
| 142 | 140, 141 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑦:𝐴⟶𝐵) |
| 143 | | ffvelrn 6357 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦:𝐴⟶𝐵 ∧ (𝐹‘𝑐) ∈ 𝐴) → (𝑦‘(𝐹‘𝑐)) ∈ 𝐵) |
| 144 | 142, 137,
143 | syl2an 494 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ 𝑐 ∈ dom 𝐹) → (𝑦‘(𝐹‘𝑐)) ∈ 𝐵) |
| 145 | | isorel 6576 |
. . . . . . . . . . . . . . . . 17
⊢ ((◡𝐺 Isom 𝑆, E (𝐵, dom 𝐺) ∧ ((𝑥‘(𝐹‘𝑐)) ∈ 𝐵 ∧ (𝑦‘(𝐹‘𝑐)) ∈ 𝐵)) → ((𝑥‘(𝐹‘𝑐))𝑆(𝑦‘(𝐹‘𝑐)) ↔ (◡𝐺‘(𝑥‘(𝐹‘𝑐))) E (◡𝐺‘(𝑦‘(𝐹‘𝑐))))) |
| 146 | 130, 139,
144, 145 | syl12anc 1324 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ 𝑐 ∈ dom 𝐹) → ((𝑥‘(𝐹‘𝑐))𝑆(𝑦‘(𝐹‘𝑐)) ↔ (◡𝐺‘(𝑥‘(𝐹‘𝑐))) E (◡𝐺‘(𝑦‘(𝐹‘𝑐))))) |
| 147 | | fvex 6201 |
. . . . . . . . . . . . . . . . 17
⊢ (◡𝐺‘(𝑦‘(𝐹‘𝑐))) ∈ V |
| 148 | 147 | epelc 5031 |
. . . . . . . . . . . . . . . 16
⊢ ((◡𝐺‘(𝑥‘(𝐹‘𝑐))) E (◡𝐺‘(𝑦‘(𝐹‘𝑐))) ↔ (◡𝐺‘(𝑥‘(𝐹‘𝑐))) ∈ (◡𝐺‘(𝑦‘(𝐹‘𝑐)))) |
| 149 | 146, 148 | syl6bb 276 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ 𝑐 ∈ dom 𝐹) → ((𝑥‘(𝐹‘𝑐))𝑆(𝑦‘(𝐹‘𝑐)) ↔ (◡𝐺‘(𝑥‘(𝐹‘𝑐))) ∈ (◡𝐺‘(𝑦‘(𝐹‘𝑐))))) |
| 150 | 135 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ 𝑐 ∈ dom 𝐹) → 𝑥:𝐴⟶𝐵) |
| 151 | | fco 6058 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥:𝐴⟶𝐵 ∧ 𝐹:dom 𝐹⟶𝐴) → (𝑥 ∘ 𝐹):dom 𝐹⟶𝐵) |
| 152 | 150, 136,
151 | sylancl 694 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ 𝑐 ∈ dom 𝐹) → (𝑥 ∘ 𝐹):dom 𝐹⟶𝐵) |
| 153 | | fvco3 6275 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∘ 𝐹):dom 𝐹⟶𝐵 ∧ 𝑐 ∈ dom 𝐹) → ((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑐) = (◡𝐺‘((𝑥 ∘ 𝐹)‘𝑐))) |
| 154 | 152, 153 | sylancom 701 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ 𝑐 ∈ dom 𝐹) → ((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑐) = (◡𝐺‘((𝑥 ∘ 𝐹)‘𝑐))) |
| 155 | | simpr 477 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ 𝑐 ∈ dom 𝐹) → 𝑐 ∈ dom 𝐹) |
| 156 | | fvco3 6275 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹:dom 𝐹⟶𝐴 ∧ 𝑐 ∈ dom 𝐹) → ((𝑥 ∘ 𝐹)‘𝑐) = (𝑥‘(𝐹‘𝑐))) |
| 157 | 136, 155,
156 | sylancr 695 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ 𝑐 ∈ dom 𝐹) → ((𝑥 ∘ 𝐹)‘𝑐) = (𝑥‘(𝐹‘𝑐))) |
| 158 | 157 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ 𝑐 ∈ dom 𝐹) → (◡𝐺‘((𝑥 ∘ 𝐹)‘𝑐)) = (◡𝐺‘(𝑥‘(𝐹‘𝑐)))) |
| 159 | 154, 158 | eqtrd 2656 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ 𝑐 ∈ dom 𝐹) → ((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑐) = (◡𝐺‘(𝑥‘(𝐹‘𝑐)))) |
| 160 | 142 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ 𝑐 ∈ dom 𝐹) → 𝑦:𝐴⟶𝐵) |
| 161 | | fco 6058 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦:𝐴⟶𝐵 ∧ 𝐹:dom 𝐹⟶𝐴) → (𝑦 ∘ 𝐹):dom 𝐹⟶𝐵) |
| 162 | 160, 136,
161 | sylancl 694 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ 𝑐 ∈ dom 𝐹) → (𝑦 ∘ 𝐹):dom 𝐹⟶𝐵) |
| 163 | | fvco3 6275 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 ∘ 𝐹):dom 𝐹⟶𝐵 ∧ 𝑐 ∈ dom 𝐹) → ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑐) = (◡𝐺‘((𝑦 ∘ 𝐹)‘𝑐))) |
| 164 | 162, 163 | sylancom 701 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ 𝑐 ∈ dom 𝐹) → ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑐) = (◡𝐺‘((𝑦 ∘ 𝐹)‘𝑐))) |
| 165 | | fvco3 6275 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹:dom 𝐹⟶𝐴 ∧ 𝑐 ∈ dom 𝐹) → ((𝑦 ∘ 𝐹)‘𝑐) = (𝑦‘(𝐹‘𝑐))) |
| 166 | 136, 155,
165 | sylancr 695 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ 𝑐 ∈ dom 𝐹) → ((𝑦 ∘ 𝐹)‘𝑐) = (𝑦‘(𝐹‘𝑐))) |
| 167 | 166 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ 𝑐 ∈ dom 𝐹) → (◡𝐺‘((𝑦 ∘ 𝐹)‘𝑐)) = (◡𝐺‘(𝑦‘(𝐹‘𝑐)))) |
| 168 | 164, 167 | eqtrd 2656 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ 𝑐 ∈ dom 𝐹) → ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑐) = (◡𝐺‘(𝑦‘(𝐹‘𝑐)))) |
| 169 | 159, 168 | eleq12d 2695 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ 𝑐 ∈ dom 𝐹) → (((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑐) ∈ ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑐) ↔ (◡𝐺‘(𝑥‘(𝐹‘𝑐))) ∈ (◡𝐺‘(𝑦‘(𝐹‘𝑐))))) |
| 170 | 149, 169 | bitr4d 271 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ 𝑐 ∈ dom 𝐹) → ((𝑥‘(𝐹‘𝑐))𝑆(𝑦‘(𝐹‘𝑐)) ↔ ((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑐) ∈ ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑐))) |
| 171 | 87 | raleqdv 3144 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (∀𝑤 ∈ ran 𝐹((𝐹‘𝑐)𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ ∀𝑤 ∈ 𝐴 ((𝐹‘𝑐)𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))) |
| 172 | | breq2 4657 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = (𝐹‘𝑑) → ((𝐹‘𝑐)𝑅𝑤 ↔ (𝐹‘𝑐)𝑅(𝐹‘𝑑))) |
| 173 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = (𝐹‘𝑑) → (𝑥‘𝑤) = (𝑥‘(𝐹‘𝑑))) |
| 174 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = (𝐹‘𝑑) → (𝑦‘𝑤) = (𝑦‘(𝐹‘𝑑))) |
| 175 | 173, 174 | eqeq12d 2637 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = (𝐹‘𝑑) → ((𝑥‘𝑤) = (𝑦‘𝑤) ↔ (𝑥‘(𝐹‘𝑑)) = (𝑦‘(𝐹‘𝑑)))) |
| 176 | 172, 175 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = (𝐹‘𝑑) → (((𝐹‘𝑐)𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ ((𝐹‘𝑐)𝑅(𝐹‘𝑑) → (𝑥‘(𝐹‘𝑑)) = (𝑦‘(𝐹‘𝑑))))) |
| 177 | 176 | ralrn 6362 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 Fn dom 𝐹 → (∀𝑤 ∈ ran 𝐹((𝐹‘𝑐)𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ ∀𝑑 ∈ dom 𝐹((𝐹‘𝑐)𝑅(𝐹‘𝑑) → (𝑥‘(𝐹‘𝑑)) = (𝑦‘(𝐹‘𝑑))))) |
| 178 | 74, 75, 177 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (∀𝑤 ∈ ran 𝐹((𝐹‘𝑐)𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ ∀𝑑 ∈ dom 𝐹((𝐹‘𝑐)𝑅(𝐹‘𝑑) → (𝑥‘(𝐹‘𝑑)) = (𝑦‘(𝐹‘𝑑))))) |
| 179 | 171, 178 | bitr3d 270 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (∀𝑤 ∈ 𝐴 ((𝐹‘𝑐)𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ ∀𝑑 ∈ dom 𝐹((𝐹‘𝑐)𝑅(𝐹‘𝑑) → (𝑥‘(𝐹‘𝑑)) = (𝑦‘(𝐹‘𝑑))))) |
| 180 | 179 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ 𝑐 ∈ dom 𝐹) → (∀𝑤 ∈ 𝐴 ((𝐹‘𝑐)𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ ∀𝑑 ∈ dom 𝐹((𝐹‘𝑐)𝑅(𝐹‘𝑑) → (𝑥‘(𝐹‘𝑑)) = (𝑦‘(𝐹‘𝑑))))) |
| 181 | | epel 5032 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 E 𝑑 ↔ 𝑐 ∈ 𝑑) |
| 182 | 9 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ (𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹)) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) |
| 183 | | isorel 6576 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴) ∧ (𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹)) → (𝑐 E 𝑑 ↔ (𝐹‘𝑐)𝑅(𝐹‘𝑑))) |
| 184 | 182, 183 | sylancom 701 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ (𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹)) → (𝑐 E 𝑑 ↔ (𝐹‘𝑐)𝑅(𝐹‘𝑑))) |
| 185 | 181, 184 | syl5bbr 274 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ (𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹)) → (𝑐 ∈ 𝑑 ↔ (𝐹‘𝑐)𝑅(𝐹‘𝑑))) |
| 186 | 152 | adantrr 753 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ (𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹)) → (𝑥 ∘ 𝐹):dom 𝐹⟶𝐵) |
| 187 | | simprr 796 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ (𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹)) → 𝑑 ∈ dom 𝐹) |
| 188 | | fvco3 6275 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∘ 𝐹):dom 𝐹⟶𝐵 ∧ 𝑑 ∈ dom 𝐹) → ((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑑) = (◡𝐺‘((𝑥 ∘ 𝐹)‘𝑑))) |
| 189 | 186, 187,
188 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ (𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹)) → ((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑑) = (◡𝐺‘((𝑥 ∘ 𝐹)‘𝑑))) |
| 190 | 162 | adantrr 753 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ (𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹)) → (𝑦 ∘ 𝐹):dom 𝐹⟶𝐵) |
| 191 | | fvco3 6275 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑦 ∘ 𝐹):dom 𝐹⟶𝐵 ∧ 𝑑 ∈ dom 𝐹) → ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑑) = (◡𝐺‘((𝑦 ∘ 𝐹)‘𝑑))) |
| 192 | 190, 187,
191 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ (𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹)) → ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑑) = (◡𝐺‘((𝑦 ∘ 𝐹)‘𝑑))) |
| 193 | 189, 192 | eqeq12d 2637 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ (𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹)) → (((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑑) = ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑑) ↔ (◡𝐺‘((𝑥 ∘ 𝐹)‘𝑑)) = (◡𝐺‘((𝑦 ∘ 𝐹)‘𝑑)))) |
| 194 | 30 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ (𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹)) → 𝐺:dom 𝐺–1-1-onto→𝐵) |
| 195 | | f1of1 6136 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (◡𝐺:𝐵–1-1-onto→dom
𝐺 → ◡𝐺:𝐵–1-1→dom 𝐺) |
| 196 | 194, 19, 195 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ (𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹)) → ◡𝐺:𝐵–1-1→dom 𝐺) |
| 197 | 186, 187 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ (𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹)) → ((𝑥 ∘ 𝐹)‘𝑑) ∈ 𝐵) |
| 198 | 190, 187 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ (𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹)) → ((𝑦 ∘ 𝐹)‘𝑑) ∈ 𝐵) |
| 199 | | f1fveq 6519 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((◡𝐺:𝐵–1-1→dom 𝐺 ∧ (((𝑥 ∘ 𝐹)‘𝑑) ∈ 𝐵 ∧ ((𝑦 ∘ 𝐹)‘𝑑) ∈ 𝐵)) → ((◡𝐺‘((𝑥 ∘ 𝐹)‘𝑑)) = (◡𝐺‘((𝑦 ∘ 𝐹)‘𝑑)) ↔ ((𝑥 ∘ 𝐹)‘𝑑) = ((𝑦 ∘ 𝐹)‘𝑑))) |
| 200 | 196, 197,
198, 199 | syl12anc 1324 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ (𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹)) → ((◡𝐺‘((𝑥 ∘ 𝐹)‘𝑑)) = (◡𝐺‘((𝑦 ∘ 𝐹)‘𝑑)) ↔ ((𝑥 ∘ 𝐹)‘𝑑) = ((𝑦 ∘ 𝐹)‘𝑑))) |
| 201 | | fvco3 6275 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹:dom 𝐹⟶𝐴 ∧ 𝑑 ∈ dom 𝐹) → ((𝑥 ∘ 𝐹)‘𝑑) = (𝑥‘(𝐹‘𝑑))) |
| 202 | 136, 187,
201 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ (𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹)) → ((𝑥 ∘ 𝐹)‘𝑑) = (𝑥‘(𝐹‘𝑑))) |
| 203 | | fvco3 6275 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹:dom 𝐹⟶𝐴 ∧ 𝑑 ∈ dom 𝐹) → ((𝑦 ∘ 𝐹)‘𝑑) = (𝑦‘(𝐹‘𝑑))) |
| 204 | 136, 187,
203 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ (𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹)) → ((𝑦 ∘ 𝐹)‘𝑑) = (𝑦‘(𝐹‘𝑑))) |
| 205 | 202, 204 | eqeq12d 2637 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ (𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹)) → (((𝑥 ∘ 𝐹)‘𝑑) = ((𝑦 ∘ 𝐹)‘𝑑) ↔ (𝑥‘(𝐹‘𝑑)) = (𝑦‘(𝐹‘𝑑)))) |
| 206 | 193, 200,
205 | 3bitrd 294 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ (𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹)) → (((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑑) = ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑑) ↔ (𝑥‘(𝐹‘𝑑)) = (𝑦‘(𝐹‘𝑑)))) |
| 207 | 185, 206 | imbi12d 334 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ (𝑐 ∈ dom 𝐹 ∧ 𝑑 ∈ dom 𝐹)) → ((𝑐 ∈ 𝑑 → ((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑑) = ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑑)) ↔ ((𝐹‘𝑐)𝑅(𝐹‘𝑑) → (𝑥‘(𝐹‘𝑑)) = (𝑦‘(𝐹‘𝑑))))) |
| 208 | 207 | anassrs 680 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ 𝑐 ∈ dom 𝐹) ∧ 𝑑 ∈ dom 𝐹) → ((𝑐 ∈ 𝑑 → ((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑑) = ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑑)) ↔ ((𝐹‘𝑐)𝑅(𝐹‘𝑑) → (𝑥‘(𝐹‘𝑑)) = (𝑦‘(𝐹‘𝑑))))) |
| 209 | 208 | ralbidva 2985 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ 𝑐 ∈ dom 𝐹) → (∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → ((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑑) = ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑑)) ↔ ∀𝑑 ∈ dom 𝐹((𝐹‘𝑐)𝑅(𝐹‘𝑑) → (𝑥‘(𝐹‘𝑑)) = (𝑦‘(𝐹‘𝑑))))) |
| 210 | 180, 209 | bitr4d 271 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ 𝑐 ∈ dom 𝐹) → (∀𝑤 ∈ 𝐴 ((𝐹‘𝑐)𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → ((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑑) = ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑑)))) |
| 211 | 170, 210 | anbi12d 747 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ∧ 𝑐 ∈ dom 𝐹) → (((𝑥‘(𝐹‘𝑐))𝑆(𝑦‘(𝐹‘𝑐)) ∧ ∀𝑤 ∈ 𝐴 ((𝐹‘𝑐)𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ (((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑐) ∈ ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → ((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑑) = ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑑))))) |
| 212 | 211 | rexbidva 3049 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (∃𝑐 ∈ dom 𝐹((𝑥‘(𝐹‘𝑐))𝑆(𝑦‘(𝐹‘𝑐)) ∧ ∀𝑤 ∈ 𝐴 ((𝐹‘𝑐)𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ∃𝑐 ∈ dom 𝐹(((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑐) ∈ ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → ((◡𝐺 ∘ (𝑥 ∘ 𝐹))‘𝑑) = ((◡𝐺 ∘ (𝑦 ∘ 𝐹))‘𝑑))))) |
| 213 | 115, 127,
212 | 3bitr4rd 301 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (∃𝑐 ∈ dom 𝐹((𝑥‘(𝐹‘𝑐))𝑆(𝑦‘(𝐹‘𝑐)) ∧ ∀𝑤 ∈ 𝐴 ((𝐹‘𝑐)𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑥){〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑦))) |
| 214 | 84, 88, 213 | 3bitr3d 298 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑥){〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑦))) |
| 215 | 214 | ex 450 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → ((𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈) → (∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑥){〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑦)))) |
| 216 | 215 | pm5.32rd 672 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → ((∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) ↔ (((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑥){〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑦) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)))) |
| 217 | 216 | opabbidv 4716 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → {〈𝑥, 𝑦〉 ∣ (∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈))} = {〈𝑥, 𝑦〉 ∣ (((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑥){〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑦) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈))}) |
| 218 | | wemapwe.t |
. . . . . . . . 9
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
| 219 | | df-xp 5120 |
. . . . . . . . 9
⊢ (𝑈 × 𝑈) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)} |
| 220 | 218, 219 | ineq12i 3812 |
. . . . . . . 8
⊢ (𝑇 ∩ (𝑈 × 𝑈)) = ({〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ∩ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)}) |
| 221 | | inopab 5252 |
. . . . . . . 8
⊢
({〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ∩ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)}) = {〈𝑥, 𝑦〉 ∣ (∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈))} |
| 222 | 220, 221 | eqtri 2644 |
. . . . . . 7
⊢ (𝑇 ∩ (𝑈 × 𝑈)) = {〈𝑥, 𝑦〉 ∣ (∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈))} |
| 223 | 219 | ineq2i 3811 |
. . . . . . . 8
⊢
({〈𝑥, 𝑦〉 ∣ ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑥){〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑦)} ∩ (𝑈 × 𝑈)) = ({〈𝑥, 𝑦〉 ∣ ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑥){〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑦)} ∩ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)}) |
| 224 | | inopab 5252 |
. . . . . . . 8
⊢
({〈𝑥, 𝑦〉 ∣ ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑥){〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑦)} ∩ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)}) = {〈𝑥, 𝑦〉 ∣ (((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑥){〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑦) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈))} |
| 225 | 223, 224 | eqtri 2644 |
. . . . . . 7
⊢
({〈𝑥, 𝑦〉 ∣ ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑥){〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑦)} ∩ (𝑈 × 𝑈)) = {〈𝑥, 𝑦〉 ∣ (((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑥){〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑦) ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈))} |
| 226 | 217, 222,
225 | 3eqtr4g 2681 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → (𝑇 ∩ (𝑈 × 𝑈)) = ({〈𝑥, 𝑦〉 ∣ ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑥){〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑦)} ∩ (𝑈 × 𝑈))) |
| 227 | | weeq1 5102 |
. . . . . 6
⊢ ((𝑇 ∩ (𝑈 × 𝑈)) = ({〈𝑥, 𝑦〉 ∣ ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑥){〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑦)} ∩ (𝑈 × 𝑈)) → ((𝑇 ∩ (𝑈 × 𝑈)) We 𝑈 ↔ ({〈𝑥, 𝑦〉 ∣ ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑥){〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑦)} ∩ (𝑈 × 𝑈)) We 𝑈)) |
| 228 | 226, 227 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → ((𝑇 ∩ (𝑈 × 𝑈)) We 𝑈 ↔ ({〈𝑥, 𝑦〉 ∣ ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑥){〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ dom 𝐹((𝑎‘𝑐) ∈ (𝑏‘𝑐) ∧ ∀𝑑 ∈ dom 𝐹(𝑐 ∈ 𝑑 → (𝑎‘𝑑) = (𝑏‘𝑑)))} ((𝑓 ∈ 𝑈 ↦ (◡𝐺 ∘ (𝑓 ∘ 𝐹)))‘𝑦)} ∩ (𝑈 × 𝑈)) We 𝑈)) |
| 229 | 73, 228 | mpbird 247 |
. . . 4
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → (𝑇 ∩ (𝑈 × 𝑈)) We 𝑈) |
| 230 | | weinxp 5186 |
. . . 4
⊢ (𝑇 We 𝑈 ↔ (𝑇 ∩ (𝑈 × 𝑈)) We 𝑈) |
| 231 | 229, 230 | sylibr 224 |
. . 3
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐴 ∈ V)) → 𝑇 We 𝑈) |
| 232 | 231 | ex 450 |
. 2
⊢ (𝜑 → ((𝐵 ∈ V ∧ 𝐴 ∈ V) → 𝑇 We 𝑈)) |
| 233 | | we0 5109 |
. . 3
⊢ 𝑇 We ∅ |
| 234 | | elmapex 7878 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐵 ↑𝑚 𝐴) → (𝐵 ∈ V ∧ 𝐴 ∈ V)) |
| 235 | 234 | con3i 150 |
. . . . . . . 8
⊢ (¬
(𝐵 ∈ V ∧ 𝐴 ∈ V) → ¬ 𝑥 ∈ (𝐵 ↑𝑚 𝐴)) |
| 236 | 235 | pm2.21d 118 |
. . . . . . 7
⊢ (¬
(𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐵 ↑𝑚 𝐴) → ¬ 𝑥 finSupp 𝑍)) |
| 237 | 236 | ralrimiv 2965 |
. . . . . 6
⊢ (¬
(𝐵 ∈ V ∧ 𝐴 ∈ V) → ∀𝑥 ∈ (𝐵 ↑𝑚 𝐴) ¬ 𝑥 finSupp 𝑍) |
| 238 | | rabeq0 3957 |
. . . . . 6
⊢ ({𝑥 ∈ (𝐵 ↑𝑚 𝐴) ∣ 𝑥 finSupp 𝑍} = ∅ ↔ ∀𝑥 ∈ (𝐵 ↑𝑚 𝐴) ¬ 𝑥 finSupp 𝑍) |
| 239 | 237, 238 | sylibr 224 |
. . . . 5
⊢ (¬
(𝐵 ∈ V ∧ 𝐴 ∈ V) → {𝑥 ∈ (𝐵 ↑𝑚 𝐴) ∣ 𝑥 finSupp 𝑍} = ∅) |
| 240 | 1, 239 | syl5eq 2668 |
. . . 4
⊢ (¬
(𝐵 ∈ V ∧ 𝐴 ∈ V) → 𝑈 = ∅) |
| 241 | | weeq2 5103 |
. . . 4
⊢ (𝑈 = ∅ → (𝑇 We 𝑈 ↔ 𝑇 We ∅)) |
| 242 | 240, 241 | syl 17 |
. . 3
⊢ (¬
(𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝑇 We 𝑈 ↔ 𝑇 We ∅)) |
| 243 | 233, 242 | mpbiri 248 |
. 2
⊢ (¬
(𝐵 ∈ V ∧ 𝐴 ∈ V) → 𝑇 We 𝑈) |
| 244 | 232, 243 | pm2.61d1 171 |
1
⊢ (𝜑 → 𝑇 We 𝑈) |