MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeeui Structured version   Visualization version   GIF version

Theorem oeeui 7682
Description: The division algorithm for ordinal exponentiation. (This version of oeeu 7683 gives an explicit expression for the unique solution of the equation, in terms of the solution 𝑃 to omeu 7665.) (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
oeeu.1 𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}
oeeu.2 𝑃 = (℩𝑤𝑦 ∈ On ∃𝑧 ∈ (𝐴𝑜 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵))
oeeu.3 𝑌 = (1st𝑃)
oeeu.4 𝑍 = (2nd𝑃)
Assertion
Ref Expression
oeeui ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜) ∧ 𝐸 ∈ (𝐴𝑜 𝐶)) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵) ↔ (𝐶 = 𝑋𝐷 = 𝑌𝐸 = 𝑍)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤)   𝑃(𝑥,𝑦,𝑧,𝑤)   𝐸(𝑥,𝑦,𝑧,𝑤)   𝑋(𝑥)   𝑌(𝑥,𝑦,𝑧,𝑤)   𝑍(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem oeeui
Dummy variables 𝑎 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 3732 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (On ∖ 2𝑜) → 𝐴 ∈ On)
21adantr 481 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝐴 ∈ On)
32ad2antrr 762 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐴 ∈ On)
4 simprl 794 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐶 ∈ On)
5 oecl 7617 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝑜 𝐶) ∈ On)
63, 4, 5syl2anc 693 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐴𝑜 𝐶) ∈ On)
7 om1 7622 . . . . . . . . . . . . . . 15 ((𝐴𝑜 𝐶) ∈ On → ((𝐴𝑜 𝐶) ·𝑜 1𝑜) = (𝐴𝑜 𝐶))
86, 7syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → ((𝐴𝑜 𝐶) ·𝑜 1𝑜) = (𝐴𝑜 𝐶))
9 df1o2 7572 . . . . . . . . . . . . . . . 16 1𝑜 = {∅}
10 dif1o 7580 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ (𝐴 ∖ 1𝑜) ↔ (𝐷𝐴𝐷 ≠ ∅))
1110simprbi 480 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ (𝐴 ∖ 1𝑜) → 𝐷 ≠ ∅)
1211ad2antll 765 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐷 ≠ ∅)
13 eldifi 3732 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∈ (𝐴 ∖ 1𝑜) → 𝐷𝐴)
1413ad2antll 765 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐷𝐴)
15 onelon 5748 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ 𝐷𝐴) → 𝐷 ∈ On)
163, 14, 15syl2anc 693 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐷 ∈ On)
17 on0eln0 5780 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ On → (∅ ∈ 𝐷𝐷 ≠ ∅))
1816, 17syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (∅ ∈ 𝐷𝐷 ≠ ∅))
1912, 18mpbird 247 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → ∅ ∈ 𝐷)
2019snssd 4340 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → {∅} ⊆ 𝐷)
219, 20syl5eqss 3649 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 1𝑜𝐷)
22 1on 7567 . . . . . . . . . . . . . . . . 17 1𝑜 ∈ On
2322a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 1𝑜 ∈ On)
24 omwordi 7651 . . . . . . . . . . . . . . . 16 ((1𝑜 ∈ On ∧ 𝐷 ∈ On ∧ (𝐴𝑜 𝐶) ∈ On) → (1𝑜𝐷 → ((𝐴𝑜 𝐶) ·𝑜 1𝑜) ⊆ ((𝐴𝑜 𝐶) ·𝑜 𝐷)))
2523, 16, 6, 24syl3anc 1326 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (1𝑜𝐷 → ((𝐴𝑜 𝐶) ·𝑜 1𝑜) ⊆ ((𝐴𝑜 𝐶) ·𝑜 𝐷)))
2621, 25mpd 15 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → ((𝐴𝑜 𝐶) ·𝑜 1𝑜) ⊆ ((𝐴𝑜 𝐶) ·𝑜 𝐷))
278, 26eqsstr3d 3640 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐴𝑜 𝐶) ⊆ ((𝐴𝑜 𝐶) ·𝑜 𝐷))
28 omcl 7616 . . . . . . . . . . . . . . . 16 (((𝐴𝑜 𝐶) ∈ On ∧ 𝐷 ∈ On) → ((𝐴𝑜 𝐶) ·𝑜 𝐷) ∈ On)
296, 16, 28syl2anc 693 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → ((𝐴𝑜 𝐶) ·𝑜 𝐷) ∈ On)
30 simplrl 800 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐸 ∈ (𝐴𝑜 𝐶))
31 onelon 5748 . . . . . . . . . . . . . . . 16 (((𝐴𝑜 𝐶) ∈ On ∧ 𝐸 ∈ (𝐴𝑜 𝐶)) → 𝐸 ∈ On)
326, 30, 31syl2anc 693 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐸 ∈ On)
33 oaword1 7632 . . . . . . . . . . . . . . 15 ((((𝐴𝑜 𝐶) ·𝑜 𝐷) ∈ On ∧ 𝐸 ∈ On) → ((𝐴𝑜 𝐶) ·𝑜 𝐷) ⊆ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸))
3429, 32, 33syl2anc 693 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → ((𝐴𝑜 𝐶) ·𝑜 𝐷) ⊆ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸))
35 simplrr 801 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)
3634, 35sseqtrd 3641 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → ((𝐴𝑜 𝐶) ·𝑜 𝐷) ⊆ 𝐵)
3727, 36sstrd 3613 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐴𝑜 𝐶) ⊆ 𝐵)
38 oeeu.1 . . . . . . . . . . . . . . 15 𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴𝑜 𝑥)}
3938oeeulem 7681 . . . . . . . . . . . . . 14 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (𝑋 ∈ On ∧ (𝐴𝑜 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴𝑜 suc 𝑋)))
4039simp3d 1075 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝐵 ∈ (𝐴𝑜 suc 𝑋))
4140ad2antrr 762 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐵 ∈ (𝐴𝑜 suc 𝑋))
4239simp1d 1073 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝑋 ∈ On)
4342ad2antrr 762 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝑋 ∈ On)
44 suceloni 7013 . . . . . . . . . . . . . . 15 (𝑋 ∈ On → suc 𝑋 ∈ On)
4543, 44syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → suc 𝑋 ∈ On)
46 oecl 7617 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ suc 𝑋 ∈ On) → (𝐴𝑜 suc 𝑋) ∈ On)
473, 45, 46syl2anc 693 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐴𝑜 suc 𝑋) ∈ On)
48 ontr2 5772 . . . . . . . . . . . . 13 (((𝐴𝑜 𝐶) ∈ On ∧ (𝐴𝑜 suc 𝑋) ∈ On) → (((𝐴𝑜 𝐶) ⊆ 𝐵𝐵 ∈ (𝐴𝑜 suc 𝑋)) → (𝐴𝑜 𝐶) ∈ (𝐴𝑜 suc 𝑋)))
496, 47, 48syl2anc 693 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (((𝐴𝑜 𝐶) ⊆ 𝐵𝐵 ∈ (𝐴𝑜 suc 𝑋)) → (𝐴𝑜 𝐶) ∈ (𝐴𝑜 suc 𝑋)))
5037, 41, 49mp2and 715 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐴𝑜 𝐶) ∈ (𝐴𝑜 suc 𝑋))
51 simplll 798 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐴 ∈ (On ∖ 2𝑜))
52 oeord 7668 . . . . . . . . . . . 12 ((𝐶 ∈ On ∧ suc 𝑋 ∈ On ∧ 𝐴 ∈ (On ∖ 2𝑜)) → (𝐶 ∈ suc 𝑋 ↔ (𝐴𝑜 𝐶) ∈ (𝐴𝑜 suc 𝑋)))
534, 45, 51, 52syl3anc 1326 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐶 ∈ suc 𝑋 ↔ (𝐴𝑜 𝐶) ∈ (𝐴𝑜 suc 𝑋)))
5450, 53mpbird 247 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐶 ∈ suc 𝑋)
55 onsssuc 5813 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ 𝑋 ∈ On) → (𝐶𝑋𝐶 ∈ suc 𝑋))
564, 43, 55syl2anc 693 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐶𝑋𝐶 ∈ suc 𝑋))
5754, 56mpbird 247 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐶𝑋)
5839simp2d 1074 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (𝐴𝑜 𝑋) ⊆ 𝐵)
5958ad2antrr 762 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐴𝑜 𝑋) ⊆ 𝐵)
60 eloni 5733 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → Ord 𝐴)
613, 60syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → Ord 𝐴)
62 ordsucss 7018 . . . . . . . . . . . . . . . 16 (Ord 𝐴 → (𝐷𝐴 → suc 𝐷𝐴))
6361, 14, 62sylc 65 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → suc 𝐷𝐴)
64 suceloni 7013 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ On → suc 𝐷 ∈ On)
6516, 64syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → suc 𝐷 ∈ On)
66 dif20el 7585 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (On ∖ 2𝑜) → ∅ ∈ 𝐴)
6751, 66syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → ∅ ∈ 𝐴)
68 oen0 7666 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴𝑜 𝐶))
693, 4, 67, 68syl21anc 1325 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → ∅ ∈ (𝐴𝑜 𝐶))
70 omword 7650 . . . . . . . . . . . . . . . 16 (((suc 𝐷 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴𝑜 𝐶) ∈ On) ∧ ∅ ∈ (𝐴𝑜 𝐶)) → (suc 𝐷𝐴 ↔ ((𝐴𝑜 𝐶) ·𝑜 suc 𝐷) ⊆ ((𝐴𝑜 𝐶) ·𝑜 𝐴)))
7165, 3, 6, 69, 70syl31anc 1329 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (suc 𝐷𝐴 ↔ ((𝐴𝑜 𝐶) ·𝑜 suc 𝐷) ⊆ ((𝐴𝑜 𝐶) ·𝑜 𝐴)))
7263, 71mpbid 222 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → ((𝐴𝑜 𝐶) ·𝑜 suc 𝐷) ⊆ ((𝐴𝑜 𝐶) ·𝑜 𝐴))
73 oaord 7627 . . . . . . . . . . . . . . . . . 18 ((𝐸 ∈ On ∧ (𝐴𝑜 𝐶) ∈ On ∧ ((𝐴𝑜 𝐶) ·𝑜 𝐷) ∈ On) → (𝐸 ∈ (𝐴𝑜 𝐶) ↔ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) ∈ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 (𝐴𝑜 𝐶))))
7432, 6, 29, 73syl3anc 1326 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐸 ∈ (𝐴𝑜 𝐶) ↔ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) ∈ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 (𝐴𝑜 𝐶))))
7530, 74mpbid 222 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) ∈ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 (𝐴𝑜 𝐶)))
7635, 75eqeltrrd 2702 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐵 ∈ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 (𝐴𝑜 𝐶)))
77 odi 7659 . . . . . . . . . . . . . . . . 17 (((𝐴𝑜 𝐶) ∈ On ∧ 𝐷 ∈ On ∧ 1𝑜 ∈ On) → ((𝐴𝑜 𝐶) ·𝑜 (𝐷 +𝑜 1𝑜)) = (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 ((𝐴𝑜 𝐶) ·𝑜 1𝑜)))
786, 16, 23, 77syl3anc 1326 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → ((𝐴𝑜 𝐶) ·𝑜 (𝐷 +𝑜 1𝑜)) = (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 ((𝐴𝑜 𝐶) ·𝑜 1𝑜)))
79 oa1suc 7611 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ On → (𝐷 +𝑜 1𝑜) = suc 𝐷)
8016, 79syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐷 +𝑜 1𝑜) = suc 𝐷)
8180oveq2d 6666 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → ((𝐴𝑜 𝐶) ·𝑜 (𝐷 +𝑜 1𝑜)) = ((𝐴𝑜 𝐶) ·𝑜 suc 𝐷))
828oveq2d 6666 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 ((𝐴𝑜 𝐶) ·𝑜 1𝑜)) = (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 (𝐴𝑜 𝐶)))
8378, 81, 823eqtr3d 2664 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → ((𝐴𝑜 𝐶) ·𝑜 suc 𝐷) = (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 (𝐴𝑜 𝐶)))
8476, 83eleqtrrd 2704 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐵 ∈ ((𝐴𝑜 𝐶) ·𝑜 suc 𝐷))
8572, 84sseldd 3604 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐵 ∈ ((𝐴𝑜 𝐶) ·𝑜 𝐴))
86 oesuc 7607 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝑜 suc 𝐶) = ((𝐴𝑜 𝐶) ·𝑜 𝐴))
873, 4, 86syl2anc 693 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐴𝑜 suc 𝐶) = ((𝐴𝑜 𝐶) ·𝑜 𝐴))
8885, 87eleqtrrd 2704 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐵 ∈ (𝐴𝑜 suc 𝐶))
89 oecl 7617 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴𝑜 𝑋) ∈ On)
903, 43, 89syl2anc 693 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐴𝑜 𝑋) ∈ On)
91 suceloni 7013 . . . . . . . . . . . . . . 15 (𝐶 ∈ On → suc 𝐶 ∈ On)
9291ad2antrl 764 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → suc 𝐶 ∈ On)
93 oecl 7617 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ suc 𝐶 ∈ On) → (𝐴𝑜 suc 𝐶) ∈ On)
943, 92, 93syl2anc 693 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐴𝑜 suc 𝐶) ∈ On)
95 ontr2 5772 . . . . . . . . . . . . 13 (((𝐴𝑜 𝑋) ∈ On ∧ (𝐴𝑜 suc 𝐶) ∈ On) → (((𝐴𝑜 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴𝑜 suc 𝐶)) → (𝐴𝑜 𝑋) ∈ (𝐴𝑜 suc 𝐶)))
9690, 94, 95syl2anc 693 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (((𝐴𝑜 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴𝑜 suc 𝐶)) → (𝐴𝑜 𝑋) ∈ (𝐴𝑜 suc 𝐶)))
9759, 88, 96mp2and 715 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐴𝑜 𝑋) ∈ (𝐴𝑜 suc 𝐶))
98 oeord 7668 . . . . . . . . . . . 12 ((𝑋 ∈ On ∧ suc 𝐶 ∈ On ∧ 𝐴 ∈ (On ∖ 2𝑜)) → (𝑋 ∈ suc 𝐶 ↔ (𝐴𝑜 𝑋) ∈ (𝐴𝑜 suc 𝐶)))
9943, 92, 51, 98syl3anc 1326 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝑋 ∈ suc 𝐶 ↔ (𝐴𝑜 𝑋) ∈ (𝐴𝑜 suc 𝐶)))
10097, 99mpbird 247 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝑋 ∈ suc 𝐶)
101 onsssuc 5813 . . . . . . . . . . 11 ((𝑋 ∈ On ∧ 𝐶 ∈ On) → (𝑋𝐶𝑋 ∈ suc 𝐶))
10243, 4, 101syl2anc 693 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝑋𝐶𝑋 ∈ suc 𝐶))
103100, 102mpbird 247 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝑋𝐶)
10457, 103eqssd 3620 . . . . . . . 8 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → 𝐶 = 𝑋)
105104, 16jca 554 . . . . . . 7 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → (𝐶 = 𝑋𝐷 ∈ On))
106 simprl 794 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐶 = 𝑋)
10742ad2antrr 762 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝑋 ∈ On)
108106, 107eqeltrd 2701 . . . . . . . 8 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐶 ∈ On)
1092ad2antrr 762 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐴 ∈ On)
110109, 108, 5syl2anc 693 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴𝑜 𝐶) ∈ On)
111 simprr 796 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐷 ∈ On)
112110, 111, 28syl2anc 693 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴𝑜 𝐶) ·𝑜 𝐷) ∈ On)
113 simplrl 800 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐸 ∈ (𝐴𝑜 𝐶))
114110, 113, 31syl2anc 693 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐸 ∈ On)
115112, 114, 33syl2anc 693 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴𝑜 𝐶) ·𝑜 𝐷) ⊆ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸))
116 simplrr 801 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)
117115, 116sseqtrd 3641 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴𝑜 𝐶) ·𝑜 𝐷) ⊆ 𝐵)
11840ad2antrr 762 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐵 ∈ (𝐴𝑜 suc 𝑋))
119 suceq 5790 . . . . . . . . . . . . . . 15 (𝐶 = 𝑋 → suc 𝐶 = suc 𝑋)
120119ad2antrl 764 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → suc 𝐶 = suc 𝑋)
121120oveq2d 6666 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴𝑜 suc 𝐶) = (𝐴𝑜 suc 𝑋))
122109, 108, 86syl2anc 693 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴𝑜 suc 𝐶) = ((𝐴𝑜 𝐶) ·𝑜 𝐴))
123121, 122eqtr3d 2658 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴𝑜 suc 𝑋) = ((𝐴𝑜 𝐶) ·𝑜 𝐴))
124118, 123eleqtrd 2703 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐵 ∈ ((𝐴𝑜 𝐶) ·𝑜 𝐴))
125 omcl 7616 . . . . . . . . . . . . 13 (((𝐴𝑜 𝐶) ∈ On ∧ 𝐴 ∈ On) → ((𝐴𝑜 𝐶) ·𝑜 𝐴) ∈ On)
126110, 109, 125syl2anc 693 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴𝑜 𝐶) ·𝑜 𝐴) ∈ On)
127 ontr2 5772 . . . . . . . . . . . 12 ((((𝐴𝑜 𝐶) ·𝑜 𝐷) ∈ On ∧ ((𝐴𝑜 𝐶) ·𝑜 𝐴) ∈ On) → ((((𝐴𝑜 𝐶) ·𝑜 𝐷) ⊆ 𝐵𝐵 ∈ ((𝐴𝑜 𝐶) ·𝑜 𝐴)) → ((𝐴𝑜 𝐶) ·𝑜 𝐷) ∈ ((𝐴𝑜 𝐶) ·𝑜 𝐴)))
128112, 126, 127syl2anc 693 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((((𝐴𝑜 𝐶) ·𝑜 𝐷) ⊆ 𝐵𝐵 ∈ ((𝐴𝑜 𝐶) ·𝑜 𝐴)) → ((𝐴𝑜 𝐶) ·𝑜 𝐷) ∈ ((𝐴𝑜 𝐶) ·𝑜 𝐴)))
129117, 124, 128mp2and 715 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴𝑜 𝐶) ·𝑜 𝐷) ∈ ((𝐴𝑜 𝐶) ·𝑜 𝐴))
13066adantr 481 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ∅ ∈ 𝐴)
131130ad2antrr 762 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ∅ ∈ 𝐴)
132109, 108, 131, 68syl21anc 1325 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ∅ ∈ (𝐴𝑜 𝐶))
133 omord2 7647 . . . . . . . . . . 11 (((𝐷 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴𝑜 𝐶) ∈ On) ∧ ∅ ∈ (𝐴𝑜 𝐶)) → (𝐷𝐴 ↔ ((𝐴𝑜 𝐶) ·𝑜 𝐷) ∈ ((𝐴𝑜 𝐶) ·𝑜 𝐴)))
134111, 109, 110, 132, 133syl31anc 1329 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐷𝐴 ↔ ((𝐴𝑜 𝐶) ·𝑜 𝐷) ∈ ((𝐴𝑜 𝐶) ·𝑜 𝐴)))
135129, 134mpbird 247 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐷𝐴)
136106oveq2d 6666 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴𝑜 𝐶) = (𝐴𝑜 𝑋))
13758ad2antrr 762 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴𝑜 𝑋) ⊆ 𝐵)
138136, 137eqsstrd 3639 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴𝑜 𝐶) ⊆ 𝐵)
139 eldifi 3732 . . . . . . . . . . . . . 14 (𝐵 ∈ (On ∖ 1𝑜) → 𝐵 ∈ On)
140139adantl 482 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → 𝐵 ∈ On)
141140ad2antrr 762 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐵 ∈ On)
142 ontri1 5757 . . . . . . . . . . . 12 (((𝐴𝑜 𝐶) ∈ On ∧ 𝐵 ∈ On) → ((𝐴𝑜 𝐶) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴𝑜 𝐶)))
143110, 141, 142syl2anc 693 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴𝑜 𝐶) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴𝑜 𝐶)))
144138, 143mpbid 222 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ¬ 𝐵 ∈ (𝐴𝑜 𝐶))
145 om0 7597 . . . . . . . . . . . . . . . . 17 ((𝐴𝑜 𝐶) ∈ On → ((𝐴𝑜 𝐶) ·𝑜 ∅) = ∅)
146110, 145syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴𝑜 𝐶) ·𝑜 ∅) = ∅)
147146oveq1d 6665 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (((𝐴𝑜 𝐶) ·𝑜 ∅) +𝑜 𝐸) = (∅ +𝑜 𝐸))
148 oa0r 7618 . . . . . . . . . . . . . . . 16 (𝐸 ∈ On → (∅ +𝑜 𝐸) = 𝐸)
149114, 148syl 17 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (∅ +𝑜 𝐸) = 𝐸)
150147, 149eqtrd 2656 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (((𝐴𝑜 𝐶) ·𝑜 ∅) +𝑜 𝐸) = 𝐸)
151150, 113eqeltrd 2701 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (((𝐴𝑜 𝐶) ·𝑜 ∅) +𝑜 𝐸) ∈ (𝐴𝑜 𝐶))
152 oveq2 6658 . . . . . . . . . . . . . . 15 (𝐷 = ∅ → ((𝐴𝑜 𝐶) ·𝑜 𝐷) = ((𝐴𝑜 𝐶) ·𝑜 ∅))
153152oveq1d 6665 . . . . . . . . . . . . . 14 (𝐷 = ∅ → (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = (((𝐴𝑜 𝐶) ·𝑜 ∅) +𝑜 𝐸))
154153eleq1d 2686 . . . . . . . . . . . . 13 (𝐷 = ∅ → ((((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) ∈ (𝐴𝑜 𝐶) ↔ (((𝐴𝑜 𝐶) ·𝑜 ∅) +𝑜 𝐸) ∈ (𝐴𝑜 𝐶)))
155151, 154syl5ibrcom 237 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐷 = ∅ → (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) ∈ (𝐴𝑜 𝐶)))
156116eleq1d 2686 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) ∈ (𝐴𝑜 𝐶) ↔ 𝐵 ∈ (𝐴𝑜 𝐶)))
157155, 156sylibd 229 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐷 = ∅ → 𝐵 ∈ (𝐴𝑜 𝐶)))
158157necon3bd 2808 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (¬ 𝐵 ∈ (𝐴𝑜 𝐶) → 𝐷 ≠ ∅))
159144, 158mpd 15 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐷 ≠ ∅)
160135, 159, 10sylanbrc 698 . . . . . . . 8 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐷 ∈ (𝐴 ∖ 1𝑜))
161108, 160jca 554 . . . . . . 7 ((((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜)))
162105, 161impbida 877 . . . . . 6 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) → ((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜)) ↔ (𝐶 = 𝑋𝐷 ∈ On)))
163162ex 450 . . . . 5 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ((𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵) → ((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜)) ↔ (𝐶 = 𝑋𝐷 ∈ On))))
164163pm5.32rd 672 . . . 4 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ↔ ((𝐶 = 𝑋𝐷 ∈ On) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵))))
165 anass 681 . . . 4 (((𝐶 = 𝑋𝐷 ∈ On) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ↔ (𝐶 = 𝑋 ∧ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵))))
166164, 165syl6bb 276 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ↔ (𝐶 = 𝑋 ∧ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)))))
167 3anass 1042 . . . . . 6 ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵) ↔ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)))
168 oveq2 6658 . . . . . . . 8 (𝐶 = 𝑋 → (𝐴𝑜 𝐶) = (𝐴𝑜 𝑋))
169168eleq2d 2687 . . . . . . 7 (𝐶 = 𝑋 → (𝐸 ∈ (𝐴𝑜 𝐶) ↔ 𝐸 ∈ (𝐴𝑜 𝑋)))
170168oveq1d 6665 . . . . . . . . 9 (𝐶 = 𝑋 → ((𝐴𝑜 𝐶) ·𝑜 𝐷) = ((𝐴𝑜 𝑋) ·𝑜 𝐷))
171170oveq1d 6665 . . . . . . . 8 (𝐶 = 𝑋 → (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = (((𝐴𝑜 𝑋) ·𝑜 𝐷) +𝑜 𝐸))
172171eqeq1d 2624 . . . . . . 7 (𝐶 = 𝑋 → ((((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵 ↔ (((𝐴𝑜 𝑋) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵))
173169, 1723anbi23d 1402 . . . . . 6 (𝐶 = 𝑋 → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵) ↔ (𝐷 ∈ On ∧ 𝐸 ∈ (𝐴𝑜 𝑋) ∧ (((𝐴𝑜 𝑋) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)))
174167, 173syl5bbr 274 . . . . 5 (𝐶 = 𝑋 → ((𝐷 ∈ On ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ↔ (𝐷 ∈ On ∧ 𝐸 ∈ (𝐴𝑜 𝑋) ∧ (((𝐴𝑜 𝑋) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)))
1752, 42, 89syl2anc 693 . . . . . 6 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (𝐴𝑜 𝑋) ∈ On)
176 oen0 7666 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑋 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴𝑜 𝑋))
1772, 42, 130, 176syl21anc 1325 . . . . . . 7 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ∅ ∈ (𝐴𝑜 𝑋))
178 ne0i 3921 . . . . . . 7 (∅ ∈ (𝐴𝑜 𝑋) → (𝐴𝑜 𝑋) ≠ ∅)
179177, 178syl 17 . . . . . 6 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (𝐴𝑜 𝑋) ≠ ∅)
180 omeu 7665 . . . . . . 7 (((𝐴𝑜 𝑋) ∈ On ∧ 𝐵 ∈ On ∧ (𝐴𝑜 𝑋) ≠ ∅) → ∃!𝑎𝑑 ∈ On ∃𝑒 ∈ (𝐴𝑜 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = 𝐵))
181 oeeu.2 . . . . . . . . 9 𝑃 = (℩𝑤𝑦 ∈ On ∃𝑧 ∈ (𝐴𝑜 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵))
182 opeq1 4402 . . . . . . . . . . . . . 14 (𝑦 = 𝑑 → ⟨𝑦, 𝑧⟩ = ⟨𝑑, 𝑧⟩)
183182eqeq2d 2632 . . . . . . . . . . . . 13 (𝑦 = 𝑑 → (𝑤 = ⟨𝑦, 𝑧⟩ ↔ 𝑤 = ⟨𝑑, 𝑧⟩))
184 oveq2 6658 . . . . . . . . . . . . . . 15 (𝑦 = 𝑑 → ((𝐴𝑜 𝑋) ·𝑜 𝑦) = ((𝐴𝑜 𝑋) ·𝑜 𝑑))
185184oveq1d 6665 . . . . . . . . . . . . . 14 (𝑦 = 𝑑 → (((𝐴𝑜 𝑋) ·𝑜 𝑦) +𝑜 𝑧) = (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑧))
186185eqeq1d 2624 . . . . . . . . . . . . 13 (𝑦 = 𝑑 → ((((𝐴𝑜 𝑋) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵 ↔ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑧) = 𝐵))
187183, 186anbi12d 747 . . . . . . . . . . . 12 (𝑦 = 𝑑 → ((𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵) ↔ (𝑤 = ⟨𝑑, 𝑧⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑧) = 𝐵)))
188 opeq2 4403 . . . . . . . . . . . . . 14 (𝑧 = 𝑒 → ⟨𝑑, 𝑧⟩ = ⟨𝑑, 𝑒⟩)
189188eqeq2d 2632 . . . . . . . . . . . . 13 (𝑧 = 𝑒 → (𝑤 = ⟨𝑑, 𝑧⟩ ↔ 𝑤 = ⟨𝑑, 𝑒⟩))
190 oveq2 6658 . . . . . . . . . . . . . 14 (𝑧 = 𝑒 → (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑧) = (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒))
191190eqeq1d 2624 . . . . . . . . . . . . 13 (𝑧 = 𝑒 → ((((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑧) = 𝐵 ↔ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = 𝐵))
192189, 191anbi12d 747 . . . . . . . . . . . 12 (𝑧 = 𝑒 → ((𝑤 = ⟨𝑑, 𝑧⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑧) = 𝐵) ↔ (𝑤 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = 𝐵)))
193187, 192cbvrex2v 3180 . . . . . . . . . . 11 (∃𝑦 ∈ On ∃𝑧 ∈ (𝐴𝑜 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵) ↔ ∃𝑑 ∈ On ∃𝑒 ∈ (𝐴𝑜 𝑋)(𝑤 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = 𝐵))
194 eqeq1 2626 . . . . . . . . . . . . 13 (𝑤 = 𝑎 → (𝑤 = ⟨𝑑, 𝑒⟩ ↔ 𝑎 = ⟨𝑑, 𝑒⟩))
195194anbi1d 741 . . . . . . . . . . . 12 (𝑤 = 𝑎 → ((𝑤 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = 𝐵) ↔ (𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = 𝐵)))
1961952rexbidv 3057 . . . . . . . . . . 11 (𝑤 = 𝑎 → (∃𝑑 ∈ On ∃𝑒 ∈ (𝐴𝑜 𝑋)(𝑤 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = 𝐵) ↔ ∃𝑑 ∈ On ∃𝑒 ∈ (𝐴𝑜 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = 𝐵)))
197193, 196syl5bb 272 . . . . . . . . . 10 (𝑤 = 𝑎 → (∃𝑦 ∈ On ∃𝑧 ∈ (𝐴𝑜 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵) ↔ ∃𝑑 ∈ On ∃𝑒 ∈ (𝐴𝑜 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = 𝐵)))
198197cbviotav 5857 . . . . . . . . 9 (℩𝑤𝑦 ∈ On ∃𝑧 ∈ (𝐴𝑜 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑦) +𝑜 𝑧) = 𝐵)) = (℩𝑎𝑑 ∈ On ∃𝑒 ∈ (𝐴𝑜 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = 𝐵))
199181, 198eqtri 2644 . . . . . . . 8 𝑃 = (℩𝑎𝑑 ∈ On ∃𝑒 ∈ (𝐴𝑜 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = 𝐵))
200 oeeu.3 . . . . . . . 8 𝑌 = (1st𝑃)
201 oeeu.4 . . . . . . . 8 𝑍 = (2nd𝑃)
202 oveq2 6658 . . . . . . . . . 10 (𝑑 = 𝐷 → ((𝐴𝑜 𝑋) ·𝑜 𝑑) = ((𝐴𝑜 𝑋) ·𝑜 𝐷))
203202oveq1d 6665 . . . . . . . . 9 (𝑑 = 𝐷 → (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = (((𝐴𝑜 𝑋) ·𝑜 𝐷) +𝑜 𝑒))
204203eqeq1d 2624 . . . . . . . 8 (𝑑 = 𝐷 → ((((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = 𝐵 ↔ (((𝐴𝑜 𝑋) ·𝑜 𝐷) +𝑜 𝑒) = 𝐵))
205 oveq2 6658 . . . . . . . . 9 (𝑒 = 𝐸 → (((𝐴𝑜 𝑋) ·𝑜 𝐷) +𝑜 𝑒) = (((𝐴𝑜 𝑋) ·𝑜 𝐷) +𝑜 𝐸))
206205eqeq1d 2624 . . . . . . . 8 (𝑒 = 𝐸 → ((((𝐴𝑜 𝑋) ·𝑜 𝐷) +𝑜 𝑒) = 𝐵 ↔ (((𝐴𝑜 𝑋) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵))
207199, 200, 201, 204, 206opiota 7229 . . . . . . 7 (∃!𝑎𝑑 ∈ On ∃𝑒 ∈ (𝐴𝑜 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴𝑜 𝑋) ·𝑜 𝑑) +𝑜 𝑒) = 𝐵) → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴𝑜 𝑋) ∧ (((𝐴𝑜 𝑋) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵) ↔ (𝐷 = 𝑌𝐸 = 𝑍)))
208180, 207syl 17 . . . . . 6 (((𝐴𝑜 𝑋) ∈ On ∧ 𝐵 ∈ On ∧ (𝐴𝑜 𝑋) ≠ ∅) → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴𝑜 𝑋) ∧ (((𝐴𝑜 𝑋) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵) ↔ (𝐷 = 𝑌𝐸 = 𝑍)))
209175, 140, 179, 208syl3anc 1326 . . . . 5 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴𝑜 𝑋) ∧ (((𝐴𝑜 𝑋) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵) ↔ (𝐷 = 𝑌𝐸 = 𝑍)))
210174, 209sylan9bbr 737 . . . 4 (((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) ∧ 𝐶 = 𝑋) → ((𝐷 ∈ On ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ↔ (𝐷 = 𝑌𝐸 = 𝑍)))
211210pm5.32da 673 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → ((𝐶 = 𝑋 ∧ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵))) ↔ (𝐶 = 𝑋 ∧ (𝐷 = 𝑌𝐸 = 𝑍))))
212166, 211bitrd 268 . 2 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ↔ (𝐶 = 𝑋 ∧ (𝐷 = 𝑌𝐸 = 𝑍))))
213 3an4anass 1291 . 2 (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜) ∧ 𝐸 ∈ (𝐴𝑜 𝐶)) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵) ↔ ((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜)) ∧ (𝐸 ∈ (𝐴𝑜 𝐶) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵)))
214 3anass 1042 . 2 ((𝐶 = 𝑋𝐷 = 𝑌𝐸 = 𝑍) ↔ (𝐶 = 𝑋 ∧ (𝐷 = 𝑌𝐸 = 𝑍)))
215212, 213, 2143bitr4g 303 1 ((𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜) ∧ 𝐸 ∈ (𝐴𝑜 𝐶)) ∧ (((𝐴𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵) ↔ (𝐶 = 𝑋𝐷 = 𝑌𝐸 = 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  ∃!weu 2470  wne 2794  wrex 2913  {crab 2916  cdif 3571  wss 3574  c0 3915  {csn 4177  cop 4183   cuni 4436   cint 4475  Ord word 5722  Oncon0 5723  suc csuc 5725  cio 5849  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  1𝑜c1o 7553  2𝑜c2o 7554   +𝑜 coa 7557   ·𝑜 comu 7558  𝑜 coe 7559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566
This theorem is referenced by:  oeeu  7683  cantnflem3  8588  cantnflem4  8589
  Copyright terms: Public domain W3C validator