| Step | Hyp | Ref
| Expression |
| 1 | | eldifi 3732 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ (On ∖
2𝑜) → 𝐴 ∈ On) |
| 2 | 1 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ 𝐴 ∈
On) |
| 3 | 2 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
𝐴 ∈
On) |
| 4 | | simprl 794 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
𝐶 ∈
On) |
| 5 | | oecl 7617 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ↑𝑜
𝐶) ∈
On) |
| 6 | 3, 4, 5 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
(𝐴
↑𝑜 𝐶) ∈ On) |
| 7 | | om1 7622 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ↑𝑜
𝐶) ∈ On → ((𝐴 ↑𝑜
𝐶)
·𝑜 1𝑜) = (𝐴 ↑𝑜 𝐶)) |
| 8 | 6, 7 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
((𝐴
↑𝑜 𝐶) ·𝑜
1𝑜) = (𝐴
↑𝑜 𝐶)) |
| 9 | | df1o2 7572 |
. . . . . . . . . . . . . . . 16
⊢
1𝑜 = {∅} |
| 10 | | dif1o 7580 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐷 ∈ (𝐴 ∖ 1𝑜) ↔
(𝐷 ∈ 𝐴 ∧ 𝐷 ≠ ∅)) |
| 11 | 10 | simprbi 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐷 ∈ (𝐴 ∖ 1𝑜) → 𝐷 ≠ ∅) |
| 12 | 11 | ad2antll 765 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
𝐷 ≠
∅) |
| 13 | | eldifi 3732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐷 ∈ (𝐴 ∖ 1𝑜) → 𝐷 ∈ 𝐴) |
| 14 | 13 | ad2antll 765 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
𝐷 ∈ 𝐴) |
| 15 | | onelon 5748 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ On ∧ 𝐷 ∈ 𝐴) → 𝐷 ∈ On) |
| 16 | 3, 14, 15 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
𝐷 ∈
On) |
| 17 | | on0eln0 5780 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐷 ∈ On → (∅
∈ 𝐷 ↔ 𝐷 ≠ ∅)) |
| 18 | 16, 17 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
(∅ ∈ 𝐷 ↔
𝐷 ≠
∅)) |
| 19 | 12, 18 | mpbird 247 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
∅ ∈ 𝐷) |
| 20 | 19 | snssd 4340 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
{∅} ⊆ 𝐷) |
| 21 | 9, 20 | syl5eqss 3649 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
1𝑜 ⊆ 𝐷) |
| 22 | | 1on 7567 |
. . . . . . . . . . . . . . . . 17
⊢
1𝑜 ∈ On |
| 23 | 22 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
1𝑜 ∈ On) |
| 24 | | omwordi 7651 |
. . . . . . . . . . . . . . . 16
⊢
((1𝑜 ∈ On ∧ 𝐷 ∈ On ∧ (𝐴 ↑𝑜 𝐶) ∈ On) →
(1𝑜 ⊆ 𝐷 → ((𝐴 ↑𝑜 𝐶) ·𝑜
1𝑜) ⊆ ((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷))) |
| 25 | 23, 16, 6, 24 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
(1𝑜 ⊆ 𝐷 → ((𝐴 ↑𝑜 𝐶) ·𝑜
1𝑜) ⊆ ((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷))) |
| 26 | 21, 25 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
((𝐴
↑𝑜 𝐶) ·𝑜
1𝑜) ⊆ ((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷)) |
| 27 | 8, 26 | eqsstr3d 3640 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
(𝐴
↑𝑜 𝐶) ⊆ ((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷)) |
| 28 | | omcl 7616 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ↑𝑜
𝐶) ∈ On ∧ 𝐷 ∈ On) → ((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) ∈ On) |
| 29 | 6, 16, 28 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
((𝐴
↑𝑜 𝐶) ·𝑜 𝐷) ∈ On) |
| 30 | | simplrl 800 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
𝐸 ∈ (𝐴 ↑𝑜 𝐶)) |
| 31 | | onelon 5748 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ↑𝑜
𝐶) ∈ On ∧ 𝐸 ∈ (𝐴 ↑𝑜 𝐶)) → 𝐸 ∈ On) |
| 32 | 6, 30, 31 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
𝐸 ∈
On) |
| 33 | | oaword1 7632 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) ∈ On ∧ 𝐸 ∈ On) → ((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) ⊆ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸)) |
| 34 | 29, 32, 33 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
((𝐴
↑𝑜 𝐶) ·𝑜 𝐷) ⊆ (((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) +𝑜
𝐸)) |
| 35 | | simplrr 801 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
(((𝐴
↑𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) = 𝐵) |
| 36 | 34, 35 | sseqtrd 3641 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
((𝐴
↑𝑜 𝐶) ·𝑜 𝐷) ⊆ 𝐵) |
| 37 | 27, 36 | sstrd 3613 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
(𝐴
↑𝑜 𝐶) ⊆ 𝐵) |
| 38 | | oeeu.1 |
. . . . . . . . . . . . . . 15
⊢ 𝑋 = ∪
∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑𝑜 𝑥)} |
| 39 | 38 | oeeulem 7681 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ (𝑋 ∈ On ∧
(𝐴
↑𝑜 𝑋) ⊆ 𝐵 ∧ 𝐵 ∈ (𝐴 ↑𝑜 suc 𝑋))) |
| 40 | 39 | simp3d 1075 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ 𝐵 ∈ (𝐴 ↑𝑜 suc
𝑋)) |
| 41 | 40 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
𝐵 ∈ (𝐴 ↑𝑜 suc 𝑋)) |
| 42 | 39 | simp1d 1073 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ 𝑋 ∈
On) |
| 43 | 42 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
𝑋 ∈
On) |
| 44 | | suceloni 7013 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 ∈ On → suc 𝑋 ∈ On) |
| 45 | 43, 44 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → suc
𝑋 ∈
On) |
| 46 | | oecl 7617 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ On ∧ suc 𝑋 ∈ On) → (𝐴 ↑𝑜 suc
𝑋) ∈
On) |
| 47 | 3, 45, 46 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
(𝐴
↑𝑜 suc 𝑋) ∈ On) |
| 48 | | ontr2 5772 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ↑𝑜
𝐶) ∈ On ∧ (𝐴 ↑𝑜 suc
𝑋) ∈ On) →
(((𝐴
↑𝑜 𝐶) ⊆ 𝐵 ∧ 𝐵 ∈ (𝐴 ↑𝑜 suc 𝑋)) → (𝐴 ↑𝑜 𝐶) ∈ (𝐴 ↑𝑜 suc 𝑋))) |
| 49 | 6, 47, 48 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
(((𝐴
↑𝑜 𝐶) ⊆ 𝐵 ∧ 𝐵 ∈ (𝐴 ↑𝑜 suc 𝑋)) → (𝐴 ↑𝑜 𝐶) ∈ (𝐴 ↑𝑜 suc 𝑋))) |
| 50 | 37, 41, 49 | mp2and 715 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
(𝐴
↑𝑜 𝐶) ∈ (𝐴 ↑𝑜 suc 𝑋)) |
| 51 | | simplll 798 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
𝐴 ∈ (On ∖
2𝑜)) |
| 52 | | oeord 7668 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ On ∧ suc 𝑋 ∈ On ∧ 𝐴 ∈ (On ∖
2𝑜)) → (𝐶 ∈ suc 𝑋 ↔ (𝐴 ↑𝑜 𝐶) ∈ (𝐴 ↑𝑜 suc 𝑋))) |
| 53 | 4, 45, 51, 52 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
(𝐶 ∈ suc 𝑋 ↔ (𝐴 ↑𝑜 𝐶) ∈ (𝐴 ↑𝑜 suc 𝑋))) |
| 54 | 50, 53 | mpbird 247 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
𝐶 ∈ suc 𝑋) |
| 55 | | onsssuc 5813 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ On ∧ 𝑋 ∈ On) → (𝐶 ⊆ 𝑋 ↔ 𝐶 ∈ suc 𝑋)) |
| 56 | 4, 43, 55 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
(𝐶 ⊆ 𝑋 ↔ 𝐶 ∈ suc 𝑋)) |
| 57 | 54, 56 | mpbird 247 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
𝐶 ⊆ 𝑋) |
| 58 | 39 | simp2d 1074 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ (𝐴
↑𝑜 𝑋) ⊆ 𝐵) |
| 59 | 58 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
(𝐴
↑𝑜 𝑋) ⊆ 𝐵) |
| 60 | | eloni 5733 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ On → Ord 𝐴) |
| 61 | 3, 60 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → Ord
𝐴) |
| 62 | | ordsucss 7018 |
. . . . . . . . . . . . . . . 16
⊢ (Ord
𝐴 → (𝐷 ∈ 𝐴 → suc 𝐷 ⊆ 𝐴)) |
| 63 | 61, 14, 62 | sylc 65 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → suc
𝐷 ⊆ 𝐴) |
| 64 | | suceloni 7013 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐷 ∈ On → suc 𝐷 ∈ On) |
| 65 | 16, 64 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → suc
𝐷 ∈
On) |
| 66 | | dif20el 7585 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ (On ∖
2𝑜) → ∅ ∈ 𝐴) |
| 67 | 51, 66 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
∅ ∈ 𝐴) |
| 68 | | oen0 7666 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈
𝐴) → ∅ ∈
(𝐴
↑𝑜 𝐶)) |
| 69 | 3, 4, 67, 68 | syl21anc 1325 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
∅ ∈ (𝐴
↑𝑜 𝐶)) |
| 70 | | omword 7650 |
. . . . . . . . . . . . . . . 16
⊢ (((suc
𝐷 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ↑𝑜
𝐶) ∈ On) ∧ ∅
∈ (𝐴
↑𝑜 𝐶)) → (suc 𝐷 ⊆ 𝐴 ↔ ((𝐴 ↑𝑜 𝐶) ·𝑜
suc 𝐷) ⊆ ((𝐴 ↑𝑜
𝐶)
·𝑜 𝐴))) |
| 71 | 65, 3, 6, 69, 70 | syl31anc 1329 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
(suc 𝐷 ⊆ 𝐴 ↔ ((𝐴 ↑𝑜 𝐶) ·𝑜
suc 𝐷) ⊆ ((𝐴 ↑𝑜
𝐶)
·𝑜 𝐴))) |
| 72 | 63, 71 | mpbid 222 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
((𝐴
↑𝑜 𝐶) ·𝑜 suc 𝐷) ⊆ ((𝐴 ↑𝑜 𝐶) ·𝑜
𝐴)) |
| 73 | | oaord 7627 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐸 ∈ On ∧ (𝐴 ↑𝑜
𝐶) ∈ On ∧ ((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) ∈ On) → (𝐸 ∈ (𝐴 ↑𝑜 𝐶) ↔ (((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) +𝑜
𝐸) ∈ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 (𝐴 ↑𝑜 𝐶)))) |
| 74 | 32, 6, 29, 73 | syl3anc 1326 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
(𝐸 ∈ (𝐴 ↑𝑜
𝐶) ↔ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) ∈ (((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) +𝑜
(𝐴
↑𝑜 𝐶)))) |
| 75 | 30, 74 | mpbid 222 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
(((𝐴
↑𝑜 𝐶) ·𝑜 𝐷) +𝑜 𝐸) ∈ (((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) +𝑜
(𝐴
↑𝑜 𝐶))) |
| 76 | 35, 75 | eqeltrrd 2702 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
𝐵 ∈ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 (𝐴 ↑𝑜 𝐶))) |
| 77 | | odi 7659 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ↑𝑜
𝐶) ∈ On ∧ 𝐷 ∈ On ∧
1𝑜 ∈ On) → ((𝐴 ↑𝑜 𝐶) ·𝑜
(𝐷 +𝑜
1𝑜)) = (((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) +𝑜
((𝐴
↑𝑜 𝐶) ·𝑜
1𝑜))) |
| 78 | 6, 16, 23, 77 | syl3anc 1326 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
((𝐴
↑𝑜 𝐶) ·𝑜 (𝐷 +𝑜
1𝑜)) = (((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) +𝑜
((𝐴
↑𝑜 𝐶) ·𝑜
1𝑜))) |
| 79 | | oa1suc 7611 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐷 ∈ On → (𝐷 +𝑜
1𝑜) = suc 𝐷) |
| 80 | 16, 79 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
(𝐷 +𝑜
1𝑜) = suc 𝐷) |
| 81 | 80 | oveq2d 6666 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
((𝐴
↑𝑜 𝐶) ·𝑜 (𝐷 +𝑜
1𝑜)) = ((𝐴 ↑𝑜 𝐶) ·𝑜
suc 𝐷)) |
| 82 | 8 | oveq2d 6666 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
(((𝐴
↑𝑜 𝐶) ·𝑜 𝐷) +𝑜 ((𝐴 ↑𝑜
𝐶)
·𝑜 1𝑜)) = (((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) +𝑜
(𝐴
↑𝑜 𝐶))) |
| 83 | 78, 81, 82 | 3eqtr3d 2664 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
((𝐴
↑𝑜 𝐶) ·𝑜 suc 𝐷) = (((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) +𝑜
(𝐴
↑𝑜 𝐶))) |
| 84 | 76, 83 | eleqtrrd 2704 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
𝐵 ∈ ((𝐴 ↑𝑜
𝐶)
·𝑜 suc 𝐷)) |
| 85 | 72, 84 | sseldd 3604 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
𝐵 ∈ ((𝐴 ↑𝑜
𝐶)
·𝑜 𝐴)) |
| 86 | | oesuc 7607 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ↑𝑜 suc
𝐶) = ((𝐴 ↑𝑜 𝐶) ·𝑜
𝐴)) |
| 87 | 3, 4, 86 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
(𝐴
↑𝑜 suc 𝐶) = ((𝐴 ↑𝑜 𝐶) ·𝑜
𝐴)) |
| 88 | 85, 87 | eleqtrrd 2704 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
𝐵 ∈ (𝐴 ↑𝑜 suc 𝐶)) |
| 89 | | oecl 7617 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴 ↑𝑜
𝑋) ∈
On) |
| 90 | 3, 43, 89 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
(𝐴
↑𝑜 𝑋) ∈ On) |
| 91 | | suceloni 7013 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 ∈ On → suc 𝐶 ∈ On) |
| 92 | 91 | ad2antrl 764 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) → suc
𝐶 ∈
On) |
| 93 | | oecl 7617 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ On ∧ suc 𝐶 ∈ On) → (𝐴 ↑𝑜 suc
𝐶) ∈
On) |
| 94 | 3, 92, 93 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
(𝐴
↑𝑜 suc 𝐶) ∈ On) |
| 95 | | ontr2 5772 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ↑𝑜
𝑋) ∈ On ∧ (𝐴 ↑𝑜 suc
𝐶) ∈ On) →
(((𝐴
↑𝑜 𝑋) ⊆ 𝐵 ∧ 𝐵 ∈ (𝐴 ↑𝑜 suc 𝐶)) → (𝐴 ↑𝑜 𝑋) ∈ (𝐴 ↑𝑜 suc 𝐶))) |
| 96 | 90, 94, 95 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
(((𝐴
↑𝑜 𝑋) ⊆ 𝐵 ∧ 𝐵 ∈ (𝐴 ↑𝑜 suc 𝐶)) → (𝐴 ↑𝑜 𝑋) ∈ (𝐴 ↑𝑜 suc 𝐶))) |
| 97 | 59, 88, 96 | mp2and 715 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
(𝐴
↑𝑜 𝑋) ∈ (𝐴 ↑𝑜 suc 𝐶)) |
| 98 | | oeord 7668 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ On ∧ suc 𝐶 ∈ On ∧ 𝐴 ∈ (On ∖
2𝑜)) → (𝑋 ∈ suc 𝐶 ↔ (𝐴 ↑𝑜 𝑋) ∈ (𝐴 ↑𝑜 suc 𝐶))) |
| 99 | 43, 92, 51, 98 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
(𝑋 ∈ suc 𝐶 ↔ (𝐴 ↑𝑜 𝑋) ∈ (𝐴 ↑𝑜 suc 𝐶))) |
| 100 | 97, 99 | mpbird 247 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
𝑋 ∈ suc 𝐶) |
| 101 | | onsssuc 5813 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ On ∧ 𝐶 ∈ On) → (𝑋 ⊆ 𝐶 ↔ 𝑋 ∈ suc 𝐶)) |
| 102 | 43, 4, 101 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
(𝑋 ⊆ 𝐶 ↔ 𝑋 ∈ suc 𝐶)) |
| 103 | 100, 102 | mpbird 247 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
𝑋 ⊆ 𝐶) |
| 104 | 57, 103 | eqssd 3620 |
. . . . . . . 8
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
𝐶 = 𝑋) |
| 105 | 104, 16 | jca 554 |
. . . . . . 7
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜))) →
(𝐶 = 𝑋 ∧ 𝐷 ∈ On)) |
| 106 | | simprl 794 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → 𝐶 = 𝑋) |
| 107 | 42 | ad2antrr 762 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → 𝑋 ∈ On) |
| 108 | 106, 107 | eqeltrd 2701 |
. . . . . . . 8
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → 𝐶 ∈ On) |
| 109 | 2 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → 𝐴 ∈ On) |
| 110 | 109, 108,
5 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (𝐴 ↑𝑜 𝐶) ∈ On) |
| 111 | | simprr 796 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → 𝐷 ∈ On) |
| 112 | 110, 111,
28 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → ((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) ∈
On) |
| 113 | | simplrl 800 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → 𝐸 ∈ (𝐴 ↑𝑜 𝐶)) |
| 114 | 110, 113,
31 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → 𝐸 ∈ On) |
| 115 | 112, 114,
33 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → ((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) ⊆ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸)) |
| 116 | | simplrr 801 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) +𝑜
𝐸) = 𝐵) |
| 117 | 115, 116 | sseqtrd 3641 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → ((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) ⊆ 𝐵) |
| 118 | 40 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → 𝐵 ∈ (𝐴 ↑𝑜 suc 𝑋)) |
| 119 | | suceq 5790 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 = 𝑋 → suc 𝐶 = suc 𝑋) |
| 120 | 119 | ad2antrl 764 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → suc 𝐶 = suc 𝑋) |
| 121 | 120 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (𝐴 ↑𝑜 suc 𝐶) = (𝐴 ↑𝑜 suc 𝑋)) |
| 122 | 109, 108,
86 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (𝐴 ↑𝑜 suc 𝐶) = ((𝐴 ↑𝑜 𝐶) ·𝑜
𝐴)) |
| 123 | 121, 122 | eqtr3d 2658 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (𝐴 ↑𝑜 suc 𝑋) = ((𝐴 ↑𝑜 𝐶) ·𝑜
𝐴)) |
| 124 | 118, 123 | eleqtrd 2703 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → 𝐵 ∈ ((𝐴 ↑𝑜 𝐶) ·𝑜
𝐴)) |
| 125 | | omcl 7616 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ↑𝑜
𝐶) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ↑𝑜
𝐶)
·𝑜 𝐴) ∈ On) |
| 126 | 110, 109,
125 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → ((𝐴 ↑𝑜 𝐶) ·𝑜
𝐴) ∈
On) |
| 127 | | ontr2 5772 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) ∈ On ∧ ((𝐴 ↑𝑜 𝐶) ·𝑜
𝐴) ∈ On) →
((((𝐴
↑𝑜 𝐶) ·𝑜 𝐷) ⊆ 𝐵 ∧ 𝐵 ∈ ((𝐴 ↑𝑜 𝐶) ·𝑜
𝐴)) → ((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) ∈ ((𝐴 ↑𝑜 𝐶) ·𝑜
𝐴))) |
| 128 | 112, 126,
127 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → ((((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) ⊆ 𝐵 ∧ 𝐵 ∈ ((𝐴 ↑𝑜 𝐶) ·𝑜
𝐴)) → ((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) ∈ ((𝐴 ↑𝑜 𝐶) ·𝑜
𝐴))) |
| 129 | 117, 124,
128 | mp2and 715 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → ((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) ∈ ((𝐴 ↑𝑜
𝐶)
·𝑜 𝐴)) |
| 130 | 66 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ ∅ ∈ 𝐴) |
| 131 | 130 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → ∅ ∈ 𝐴) |
| 132 | 109, 108,
131, 68 | syl21anc 1325 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → ∅ ∈ (𝐴 ↑𝑜
𝐶)) |
| 133 | | omord2 7647 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ↑𝑜
𝐶) ∈ On) ∧ ∅
∈ (𝐴
↑𝑜 𝐶)) → (𝐷 ∈ 𝐴 ↔ ((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) ∈ ((𝐴 ↑𝑜
𝐶)
·𝑜 𝐴))) |
| 134 | 111, 109,
110, 132, 133 | syl31anc 1329 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (𝐷 ∈ 𝐴 ↔ ((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) ∈ ((𝐴 ↑𝑜
𝐶)
·𝑜 𝐴))) |
| 135 | 129, 134 | mpbird 247 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → 𝐷 ∈ 𝐴) |
| 136 | 106 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (𝐴 ↑𝑜 𝐶) = (𝐴 ↑𝑜 𝑋)) |
| 137 | 58 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (𝐴 ↑𝑜 𝑋) ⊆ 𝐵) |
| 138 | 136, 137 | eqsstrd 3639 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (𝐴 ↑𝑜 𝐶) ⊆ 𝐵) |
| 139 | | eldifi 3732 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ (On ∖
1𝑜) → 𝐵 ∈ On) |
| 140 | 139 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ 𝐵 ∈
On) |
| 141 | 140 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → 𝐵 ∈ On) |
| 142 | | ontri1 5757 |
. . . . . . . . . . . 12
⊢ (((𝐴 ↑𝑜
𝐶) ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ↑𝑜
𝐶) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴 ↑𝑜 𝐶))) |
| 143 | 110, 141,
142 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → ((𝐴 ↑𝑜 𝐶) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴 ↑𝑜 𝐶))) |
| 144 | 138, 143 | mpbid 222 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → ¬ 𝐵 ∈ (𝐴 ↑𝑜 𝐶)) |
| 145 | | om0 7597 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ↑𝑜
𝐶) ∈ On → ((𝐴 ↑𝑜
𝐶)
·𝑜 ∅) = ∅) |
| 146 | 110, 145 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → ((𝐴 ↑𝑜 𝐶) ·𝑜
∅) = ∅) |
| 147 | 146 | oveq1d 6665 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (((𝐴 ↑𝑜 𝐶) ·𝑜
∅) +𝑜 𝐸) = (∅ +𝑜 𝐸)) |
| 148 | | oa0r 7618 |
. . . . . . . . . . . . . . . 16
⊢ (𝐸 ∈ On → (∅
+𝑜 𝐸) =
𝐸) |
| 149 | 114, 148 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (∅
+𝑜 𝐸) =
𝐸) |
| 150 | 147, 149 | eqtrd 2656 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (((𝐴 ↑𝑜 𝐶) ·𝑜
∅) +𝑜 𝐸) = 𝐸) |
| 151 | 150, 113 | eqeltrd 2701 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (((𝐴 ↑𝑜 𝐶) ·𝑜
∅) +𝑜 𝐸) ∈ (𝐴 ↑𝑜 𝐶)) |
| 152 | | oveq2 6658 |
. . . . . . . . . . . . . . 15
⊢ (𝐷 = ∅ → ((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) = ((𝐴 ↑𝑜 𝐶) ·𝑜
∅)) |
| 153 | 152 | oveq1d 6665 |
. . . . . . . . . . . . . 14
⊢ (𝐷 = ∅ → (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = (((𝐴 ↑𝑜 𝐶) ·𝑜
∅) +𝑜 𝐸)) |
| 154 | 153 | eleq1d 2686 |
. . . . . . . . . . . . 13
⊢ (𝐷 = ∅ → ((((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) ∈ (𝐴 ↑𝑜 𝐶) ↔ (((𝐴 ↑𝑜 𝐶) ·𝑜
∅) +𝑜 𝐸) ∈ (𝐴 ↑𝑜 𝐶))) |
| 155 | 151, 154 | syl5ibrcom 237 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (𝐷 = ∅ → (((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) +𝑜
𝐸) ∈ (𝐴 ↑𝑜
𝐶))) |
| 156 | 116 | eleq1d 2686 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → ((((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) +𝑜
𝐸) ∈ (𝐴 ↑𝑜
𝐶) ↔ 𝐵 ∈ (𝐴 ↑𝑜 𝐶))) |
| 157 | 155, 156 | sylibd 229 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (𝐷 = ∅ → 𝐵 ∈ (𝐴 ↑𝑜 𝐶))) |
| 158 | 157 | necon3bd 2808 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (¬ 𝐵 ∈ (𝐴 ↑𝑜 𝐶) → 𝐷 ≠ ∅)) |
| 159 | 144, 158 | mpd 15 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → 𝐷 ≠ ∅) |
| 160 | 135, 159,
10 | sylanbrc 698 |
. . . . . . . 8
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → 𝐷 ∈ (𝐴 ∖
1𝑜)) |
| 161 | 108, 160 | jca 554 |
. . . . . . 7
⊢ ((((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖
1𝑜))) |
| 162 | 105, 161 | impbida 877 |
. . . . . 6
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ (𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) → ((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜)) ↔
(𝐶 = 𝑋 ∧ 𝐷 ∈ On))) |
| 163 | 162 | ex 450 |
. . . . 5
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ ((𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵) → ((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜)) ↔
(𝐶 = 𝑋 ∧ 𝐷 ∈ On)))) |
| 164 | 163 | pm5.32rd 672 |
. . . 4
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ (((𝐶 ∈ On ∧
𝐷 ∈ (𝐴 ∖ 1𝑜)) ∧
(𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ↔ ((𝐶 = 𝑋 ∧ 𝐷 ∈ On) ∧ (𝐸 ∈ (𝐴 ↑𝑜 𝐶) ∧ (((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) +𝑜
𝐸) = 𝐵)))) |
| 165 | | anass 681 |
. . . 4
⊢ (((𝐶 = 𝑋 ∧ 𝐷 ∈ On) ∧ (𝐸 ∈ (𝐴 ↑𝑜 𝐶) ∧ (((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) +𝑜
𝐸) = 𝐵)) ↔ (𝐶 = 𝑋 ∧ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴 ↑𝑜 𝐶) ∧ (((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) +𝑜
𝐸) = 𝐵)))) |
| 166 | 164, 165 | syl6bb 276 |
. . 3
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ (((𝐶 ∈ On ∧
𝐷 ∈ (𝐴 ∖ 1𝑜)) ∧
(𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ↔ (𝐶 = 𝑋 ∧ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴 ↑𝑜 𝐶) ∧ (((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) +𝑜
𝐸) = 𝐵))))) |
| 167 | | 3anass 1042 |
. . . . . 6
⊢ ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴 ↑𝑜 𝐶) ∧ (((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) +𝑜
𝐸) = 𝐵) ↔ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴 ↑𝑜 𝐶) ∧ (((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) +𝑜
𝐸) = 𝐵))) |
| 168 | | oveq2 6658 |
. . . . . . . 8
⊢ (𝐶 = 𝑋 → (𝐴 ↑𝑜 𝐶) = (𝐴 ↑𝑜 𝑋)) |
| 169 | 168 | eleq2d 2687 |
. . . . . . 7
⊢ (𝐶 = 𝑋 → (𝐸 ∈ (𝐴 ↑𝑜 𝐶) ↔ 𝐸 ∈ (𝐴 ↑𝑜 𝑋))) |
| 170 | 168 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝐶 = 𝑋 → ((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) = ((𝐴 ↑𝑜 𝑋) ·𝑜
𝐷)) |
| 171 | 170 | oveq1d 6665 |
. . . . . . . 8
⊢ (𝐶 = 𝑋 → (((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) +𝑜
𝐸) = (((𝐴 ↑𝑜 𝑋) ·𝑜
𝐷) +𝑜
𝐸)) |
| 172 | 171 | eqeq1d 2624 |
. . . . . . 7
⊢ (𝐶 = 𝑋 → ((((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) +𝑜
𝐸) = 𝐵 ↔ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝐷) +𝑜
𝐸) = 𝐵)) |
| 173 | 169, 172 | 3anbi23d 1402 |
. . . . . 6
⊢ (𝐶 = 𝑋 → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴 ↑𝑜 𝐶) ∧ (((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) +𝑜
𝐸) = 𝐵) ↔ (𝐷 ∈ On ∧ 𝐸 ∈ (𝐴 ↑𝑜 𝑋) ∧ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝐷) +𝑜
𝐸) = 𝐵))) |
| 174 | 167, 173 | syl5bbr 274 |
. . . . 5
⊢ (𝐶 = 𝑋 → ((𝐷 ∈ On ∧ (𝐸 ∈ (𝐴 ↑𝑜 𝐶) ∧ (((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) +𝑜
𝐸) = 𝐵)) ↔ (𝐷 ∈ On ∧ 𝐸 ∈ (𝐴 ↑𝑜 𝑋) ∧ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝐷) +𝑜
𝐸) = 𝐵))) |
| 175 | 2, 42, 89 | syl2anc 693 |
. . . . . 6
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ (𝐴
↑𝑜 𝑋) ∈ On) |
| 176 | | oen0 7666 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝑋 ∈ On) ∧ ∅ ∈
𝐴) → ∅ ∈
(𝐴
↑𝑜 𝑋)) |
| 177 | 2, 42, 130, 176 | syl21anc 1325 |
. . . . . . 7
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ ∅ ∈ (𝐴
↑𝑜 𝑋)) |
| 178 | | ne0i 3921 |
. . . . . . 7
⊢ (∅
∈ (𝐴
↑𝑜 𝑋) → (𝐴 ↑𝑜 𝑋) ≠ ∅) |
| 179 | 177, 178 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ (𝐴
↑𝑜 𝑋) ≠ ∅) |
| 180 | | omeu 7665 |
. . . . . . 7
⊢ (((𝐴 ↑𝑜
𝑋) ∈ On ∧ 𝐵 ∈ On ∧ (𝐴 ↑𝑜
𝑋) ≠ ∅) →
∃!𝑎∃𝑑 ∈ On ∃𝑒 ∈ (𝐴 ↑𝑜 𝑋)(𝑎 = 〈𝑑, 𝑒〉 ∧ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝑑) +𝑜
𝑒) = 𝐵)) |
| 181 | | oeeu.2 |
. . . . . . . . 9
⊢ 𝑃 = (℩𝑤∃𝑦 ∈ On ∃𝑧 ∈ (𝐴 ↑𝑜 𝑋)(𝑤 = 〈𝑦, 𝑧〉 ∧ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝑦) +𝑜
𝑧) = 𝐵)) |
| 182 | | opeq1 4402 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑑 → 〈𝑦, 𝑧〉 = 〈𝑑, 𝑧〉) |
| 183 | 182 | eqeq2d 2632 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑑 → (𝑤 = 〈𝑦, 𝑧〉 ↔ 𝑤 = 〈𝑑, 𝑧〉)) |
| 184 | | oveq2 6658 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑑 → ((𝐴 ↑𝑜 𝑋) ·𝑜
𝑦) = ((𝐴 ↑𝑜 𝑋) ·𝑜
𝑑)) |
| 185 | 184 | oveq1d 6665 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑑 → (((𝐴 ↑𝑜 𝑋) ·𝑜
𝑦) +𝑜
𝑧) = (((𝐴 ↑𝑜 𝑋) ·𝑜
𝑑) +𝑜
𝑧)) |
| 186 | 185 | eqeq1d 2624 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑑 → ((((𝐴 ↑𝑜 𝑋) ·𝑜
𝑦) +𝑜
𝑧) = 𝐵 ↔ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝑑) +𝑜
𝑧) = 𝐵)) |
| 187 | 183, 186 | anbi12d 747 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑑 → ((𝑤 = 〈𝑦, 𝑧〉 ∧ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝑦) +𝑜
𝑧) = 𝐵) ↔ (𝑤 = 〈𝑑, 𝑧〉 ∧ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝑑) +𝑜
𝑧) = 𝐵))) |
| 188 | | opeq2 4403 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑒 → 〈𝑑, 𝑧〉 = 〈𝑑, 𝑒〉) |
| 189 | 188 | eqeq2d 2632 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑒 → (𝑤 = 〈𝑑, 𝑧〉 ↔ 𝑤 = 〈𝑑, 𝑒〉)) |
| 190 | | oveq2 6658 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑒 → (((𝐴 ↑𝑜 𝑋) ·𝑜
𝑑) +𝑜
𝑧) = (((𝐴 ↑𝑜 𝑋) ·𝑜
𝑑) +𝑜
𝑒)) |
| 191 | 190 | eqeq1d 2624 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑒 → ((((𝐴 ↑𝑜 𝑋) ·𝑜
𝑑) +𝑜
𝑧) = 𝐵 ↔ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝑑) +𝑜
𝑒) = 𝐵)) |
| 192 | 189, 191 | anbi12d 747 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑒 → ((𝑤 = 〈𝑑, 𝑧〉 ∧ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝑑) +𝑜
𝑧) = 𝐵) ↔ (𝑤 = 〈𝑑, 𝑒〉 ∧ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝑑) +𝑜
𝑒) = 𝐵))) |
| 193 | 187, 192 | cbvrex2v 3180 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈ On
∃𝑧 ∈ (𝐴 ↑𝑜
𝑋)(𝑤 = 〈𝑦, 𝑧〉 ∧ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝑦) +𝑜
𝑧) = 𝐵) ↔ ∃𝑑 ∈ On ∃𝑒 ∈ (𝐴 ↑𝑜 𝑋)(𝑤 = 〈𝑑, 𝑒〉 ∧ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝑑) +𝑜
𝑒) = 𝐵)) |
| 194 | | eqeq1 2626 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑎 → (𝑤 = 〈𝑑, 𝑒〉 ↔ 𝑎 = 〈𝑑, 𝑒〉)) |
| 195 | 194 | anbi1d 741 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑎 → ((𝑤 = 〈𝑑, 𝑒〉 ∧ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝑑) +𝑜
𝑒) = 𝐵) ↔ (𝑎 = 〈𝑑, 𝑒〉 ∧ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝑑) +𝑜
𝑒) = 𝐵))) |
| 196 | 195 | 2rexbidv 3057 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑎 → (∃𝑑 ∈ On ∃𝑒 ∈ (𝐴 ↑𝑜 𝑋)(𝑤 = 〈𝑑, 𝑒〉 ∧ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝑑) +𝑜
𝑒) = 𝐵) ↔ ∃𝑑 ∈ On ∃𝑒 ∈ (𝐴 ↑𝑜 𝑋)(𝑎 = 〈𝑑, 𝑒〉 ∧ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝑑) +𝑜
𝑒) = 𝐵))) |
| 197 | 193, 196 | syl5bb 272 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑎 → (∃𝑦 ∈ On ∃𝑧 ∈ (𝐴 ↑𝑜 𝑋)(𝑤 = 〈𝑦, 𝑧〉 ∧ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝑦) +𝑜
𝑧) = 𝐵) ↔ ∃𝑑 ∈ On ∃𝑒 ∈ (𝐴 ↑𝑜 𝑋)(𝑎 = 〈𝑑, 𝑒〉 ∧ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝑑) +𝑜
𝑒) = 𝐵))) |
| 198 | 197 | cbviotav 5857 |
. . . . . . . . 9
⊢
(℩𝑤∃𝑦 ∈ On ∃𝑧 ∈ (𝐴 ↑𝑜 𝑋)(𝑤 = 〈𝑦, 𝑧〉 ∧ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝑦) +𝑜
𝑧) = 𝐵)) = (℩𝑎∃𝑑 ∈ On ∃𝑒 ∈ (𝐴 ↑𝑜 𝑋)(𝑎 = 〈𝑑, 𝑒〉 ∧ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝑑) +𝑜
𝑒) = 𝐵)) |
| 199 | 181, 198 | eqtri 2644 |
. . . . . . . 8
⊢ 𝑃 = (℩𝑎∃𝑑 ∈ On ∃𝑒 ∈ (𝐴 ↑𝑜 𝑋)(𝑎 = 〈𝑑, 𝑒〉 ∧ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝑑) +𝑜
𝑒) = 𝐵)) |
| 200 | | oeeu.3 |
. . . . . . . 8
⊢ 𝑌 = (1st ‘𝑃) |
| 201 | | oeeu.4 |
. . . . . . . 8
⊢ 𝑍 = (2nd ‘𝑃) |
| 202 | | oveq2 6658 |
. . . . . . . . . 10
⊢ (𝑑 = 𝐷 → ((𝐴 ↑𝑜 𝑋) ·𝑜
𝑑) = ((𝐴 ↑𝑜 𝑋) ·𝑜
𝐷)) |
| 203 | 202 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (((𝐴 ↑𝑜 𝑋) ·𝑜
𝑑) +𝑜
𝑒) = (((𝐴 ↑𝑜 𝑋) ·𝑜
𝐷) +𝑜
𝑒)) |
| 204 | 203 | eqeq1d 2624 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → ((((𝐴 ↑𝑜 𝑋) ·𝑜
𝑑) +𝑜
𝑒) = 𝐵 ↔ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝐷) +𝑜
𝑒) = 𝐵)) |
| 205 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑒 = 𝐸 → (((𝐴 ↑𝑜 𝑋) ·𝑜
𝐷) +𝑜
𝑒) = (((𝐴 ↑𝑜 𝑋) ·𝑜
𝐷) +𝑜
𝐸)) |
| 206 | 205 | eqeq1d 2624 |
. . . . . . . 8
⊢ (𝑒 = 𝐸 → ((((𝐴 ↑𝑜 𝑋) ·𝑜
𝐷) +𝑜
𝑒) = 𝐵 ↔ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝐷) +𝑜
𝐸) = 𝐵)) |
| 207 | 199, 200,
201, 204, 206 | opiota 7229 |
. . . . . . 7
⊢
(∃!𝑎∃𝑑 ∈ On ∃𝑒 ∈ (𝐴 ↑𝑜 𝑋)(𝑎 = 〈𝑑, 𝑒〉 ∧ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝑑) +𝑜
𝑒) = 𝐵) → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴 ↑𝑜 𝑋) ∧ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝐷) +𝑜
𝐸) = 𝐵) ↔ (𝐷 = 𝑌 ∧ 𝐸 = 𝑍))) |
| 208 | 180, 207 | syl 17 |
. . . . . 6
⊢ (((𝐴 ↑𝑜
𝑋) ∈ On ∧ 𝐵 ∈ On ∧ (𝐴 ↑𝑜
𝑋) ≠ ∅) →
((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴 ↑𝑜 𝑋) ∧ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝐷) +𝑜
𝐸) = 𝐵) ↔ (𝐷 = 𝑌 ∧ 𝐸 = 𝑍))) |
| 209 | 175, 140,
179, 208 | syl3anc 1326 |
. . . . 5
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ ((𝐷 ∈ On ∧
𝐸 ∈ (𝐴 ↑𝑜 𝑋) ∧ (((𝐴 ↑𝑜 𝑋) ·𝑜
𝐷) +𝑜
𝐸) = 𝐵) ↔ (𝐷 = 𝑌 ∧ 𝐸 = 𝑍))) |
| 210 | 174, 209 | sylan9bbr 737 |
. . . 4
⊢ (((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
∧ 𝐶 = 𝑋) → ((𝐷 ∈ On ∧ (𝐸 ∈ (𝐴 ↑𝑜 𝐶) ∧ (((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) +𝑜
𝐸) = 𝐵)) ↔ (𝐷 = 𝑌 ∧ 𝐸 = 𝑍))) |
| 211 | 210 | pm5.32da 673 |
. . 3
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ ((𝐶 = 𝑋 ∧ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴 ↑𝑜 𝐶) ∧ (((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) +𝑜
𝐸) = 𝐵))) ↔ (𝐶 = 𝑋 ∧ (𝐷 = 𝑌 ∧ 𝐸 = 𝑍)))) |
| 212 | 166, 211 | bitrd 268 |
. 2
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ (((𝐶 ∈ On ∧
𝐷 ∈ (𝐴 ∖ 1𝑜)) ∧
(𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵)) ↔ (𝐶 = 𝑋 ∧ (𝐷 = 𝑌 ∧ 𝐸 = 𝑍)))) |
| 213 | | 3an4anass 1291 |
. 2
⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜) ∧ 𝐸 ∈ (𝐴 ↑𝑜 𝐶)) ∧ (((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) +𝑜
𝐸) = 𝐵) ↔ ((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1𝑜)) ∧
(𝐸 ∈ (𝐴 ↑𝑜
𝐶) ∧ (((𝐴 ↑𝑜
𝐶)
·𝑜 𝐷) +𝑜 𝐸) = 𝐵))) |
| 214 | | 3anass 1042 |
. 2
⊢ ((𝐶 = 𝑋 ∧ 𝐷 = 𝑌 ∧ 𝐸 = 𝑍) ↔ (𝐶 = 𝑋 ∧ (𝐷 = 𝑌 ∧ 𝐸 = 𝑍))) |
| 215 | 212, 213,
214 | 3bitr4g 303 |
1
⊢ ((𝐴 ∈ (On ∖
2𝑜) ∧ 𝐵 ∈ (On ∖ 1𝑜))
→ (((𝐶 ∈ On ∧
𝐷 ∈ (𝐴 ∖ 1𝑜) ∧ 𝐸 ∈ (𝐴 ↑𝑜 𝐶)) ∧ (((𝐴 ↑𝑜 𝐶) ·𝑜
𝐷) +𝑜
𝐸) = 𝐵) ↔ (𝐶 = 𝑋 ∧ 𝐷 = 𝑌 ∧ 𝐸 = 𝑍))) |