MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lem3lem6 Structured version   Visualization version   GIF version

Theorem eupth2lem3lem6 27093
Description: Formerly part of proof of eupth2lem3 27096: If an edge (not a loop) is added to a trail, the degree of vertices not being end vertices of this edge remains odd if it was odd before (regarding the subgraphs induced by the involved trails). Remark: This seems to be not valid for hyperedges joining more vertices than (𝑃‘0) and (𝑃𝑁): if there is a third vertex in the edge, and this vertex is already contained in the trail, then the degree of this vertex could be affected by this edge! (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 25-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtx‘𝐺)
trlsegvdeg.i 𝐼 = (iEdg‘𝐺)
trlsegvdeg.f (𝜑 → Fun 𝐼)
trlsegvdeg.n (𝜑𝑁 ∈ (0..^(#‘𝐹)))
trlsegvdeg.u (𝜑𝑈𝑉)
trlsegvdeg.w (𝜑𝐹(Trails‘𝐺)𝑃)
trlsegvdeg.vx (𝜑 → (Vtx‘𝑋) = 𝑉)
trlsegvdeg.vy (𝜑 → (Vtx‘𝑌) = 𝑉)
trlsegvdeg.vz (𝜑 → (Vtx‘𝑍) = 𝑉)
trlsegvdeg.ix (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlsegvdeg.iy (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
trlsegvdeg.iz (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
eupth2lem3.o (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
eupth2lem3.e (𝜑 → (𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
Assertion
Ref Expression
eupth2lem3lem6 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Distinct variable groups:   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝑁(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem eupth2lem3lem6
StepHypRef Expression
1 trlsegvdeg.iy . . . . . . . 8 (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
213ad2ant1 1082 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
3 trlsegvdeg.vy . . . . . . . 8 (𝜑 → (Vtx‘𝑌) = 𝑉)
433ad2ant1 1082 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (Vtx‘𝑌) = 𝑉)
5 fvexd 6203 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝐹𝑁) ∈ V)
6 trlsegvdeg.u . . . . . . . 8 (𝜑𝑈𝑉)
763ad2ant1 1082 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈𝑉)
8 fvexd 6203 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝐼‘(𝐹𝑁)) ∈ V)
9 eupth2lem3.e . . . . . . . . 9 (𝜑 → (𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
10 simpl 473 . . . . . . . . . . . . . 14 ((𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1))) → 𝑈 ≠ (𝑃𝑁))
1110adantl 482 . . . . . . . . . . . . 13 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ≠ (𝑃𝑁))
12 simpr 477 . . . . . . . . . . . . . 14 ((𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1))) → 𝑈 ≠ (𝑃‘(𝑁 + 1)))
1312adantl 482 . . . . . . . . . . . . 13 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ≠ (𝑃‘(𝑁 + 1)))
1411, 13nelprd 4203 . . . . . . . . . . . 12 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → ¬ 𝑈 ∈ {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
15 df-nel 2898 . . . . . . . . . . . 12 (𝑈 ∉ {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ↔ ¬ 𝑈 ∈ {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
1614, 15sylibr 224 . . . . . . . . . . 11 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ∉ {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
17 neleq2 2903 . . . . . . . . . . 11 ((𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))} → (𝑈 ∉ (𝐼‘(𝐹𝑁)) ↔ 𝑈 ∉ {(𝑃𝑁), (𝑃‘(𝑁 + 1))}))
1816, 17syl5ibr 236 . . . . . . . . . 10 ((𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))} → (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ∉ (𝐼‘(𝐹𝑁))))
1918expd 452 . . . . . . . . 9 ((𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))} → ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) → ((𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1))) → 𝑈 ∉ (𝐼‘(𝐹𝑁)))))
209, 19syl 17 . . . . . . . 8 (𝜑 → ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) → ((𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1))) → 𝑈 ∉ (𝐼‘(𝐹𝑁)))))
21203imp 1256 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ∉ (𝐼‘(𝐹𝑁)))
222, 4, 5, 7, 8, 211hevtxdg0 26401 . . . . . 6 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → ((VtxDeg‘𝑌)‘𝑈) = 0)
2322oveq2d 6666 . . . . 5 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) = (((VtxDeg‘𝑋)‘𝑈) + 0))
24 trlsegvdeg.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
25 trlsegvdeg.i . . . . . . . . 9 𝐼 = (iEdg‘𝐺)
26 trlsegvdeg.f . . . . . . . . 9 (𝜑 → Fun 𝐼)
27 trlsegvdeg.n . . . . . . . . 9 (𝜑𝑁 ∈ (0..^(#‘𝐹)))
28 trlsegvdeg.w . . . . . . . . 9 (𝜑𝐹(Trails‘𝐺)𝑃)
29 trlsegvdeg.vx . . . . . . . . 9 (𝜑 → (Vtx‘𝑋) = 𝑉)
30 trlsegvdeg.vz . . . . . . . . 9 (𝜑 → (Vtx‘𝑍) = 𝑉)
31 trlsegvdeg.ix . . . . . . . . 9 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
32 trlsegvdeg.iz . . . . . . . . 9 (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
3324, 25, 26, 27, 6, 28, 29, 3, 30, 31, 1, 32eupth2lem3lem1 27088 . . . . . . . 8 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℕ0)
3433nn0cnd 11353 . . . . . . 7 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℂ)
3534addid1d 10236 . . . . . 6 (𝜑 → (((VtxDeg‘𝑋)‘𝑈) + 0) = ((VtxDeg‘𝑋)‘𝑈))
36353ad2ant1 1082 . . . . 5 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((VtxDeg‘𝑋)‘𝑈) + 0) = ((VtxDeg‘𝑋)‘𝑈))
3723, 36eqtrd 2656 . . . 4 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) = ((VtxDeg‘𝑋)‘𝑈))
3837breq2d 4665 . . 3 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
3938notbid 308 . 2 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
40 fveq2 6191 . . . . . . . 8 (𝑥 = 𝑈 → ((VtxDeg‘𝑋)‘𝑥) = ((VtxDeg‘𝑋)‘𝑈))
4140breq2d 4665 . . . . . . 7 (𝑥 = 𝑈 → (2 ∥ ((VtxDeg‘𝑋)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
4241notbid 308 . . . . . 6 (𝑥 = 𝑈 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
4342elrab3 3364 . . . . 5 (𝑈𝑉 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
446, 43syl 17 . . . 4 (𝜑 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
45 eupth2lem3.o . . . . 5 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
4645eleq2d 2687 . . . 4 (𝜑 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
4744, 46bitr3d 270 . . 3 (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
48473ad2ant1 1082 . 2 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
49103ad2ant3 1084 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ≠ (𝑃𝑁))
50123ad2ant3 1084 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ≠ (𝑃‘(𝑁 + 1)))
5149, 502thd 255 . . . . . 6 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 ≠ (𝑃𝑁) ↔ 𝑈 ≠ (𝑃‘(𝑁 + 1))))
52 neeq1 2856 . . . . . . 7 (𝑈 = (𝑃‘0) → (𝑈 ≠ (𝑃𝑁) ↔ (𝑃‘0) ≠ (𝑃𝑁)))
53 neeq1 2856 . . . . . . 7 (𝑈 = (𝑃‘0) → (𝑈 ≠ (𝑃‘(𝑁 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘(𝑁 + 1))))
5452, 53bibi12d 335 . . . . . 6 (𝑈 = (𝑃‘0) → ((𝑈 ≠ (𝑃𝑁) ↔ 𝑈 ≠ (𝑃‘(𝑁 + 1))) ↔ ((𝑃‘0) ≠ (𝑃𝑁) ↔ (𝑃‘0) ≠ (𝑃‘(𝑁 + 1)))))
5551, 54syl5ibcom 235 . . . . 5 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 = (𝑃‘0) → ((𝑃‘0) ≠ (𝑃𝑁) ↔ (𝑃‘0) ≠ (𝑃‘(𝑁 + 1)))))
5655pm5.32rd 672 . . . 4 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((𝑃‘0) ≠ (𝑃𝑁) ∧ 𝑈 = (𝑃‘0)) ↔ ((𝑃‘0) ≠ (𝑃‘(𝑁 + 1)) ∧ 𝑈 = (𝑃‘0))))
5749neneqd 2799 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → ¬ 𝑈 = (𝑃𝑁))
58 biorf 420 . . . . . . 7 𝑈 = (𝑃𝑁) → (𝑈 = (𝑃‘0) ↔ (𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘0))))
5957, 58syl 17 . . . . . 6 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 = (𝑃‘0) ↔ (𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘0))))
60 orcom 402 . . . . . 6 ((𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘0)) ↔ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃𝑁)))
6159, 60syl6bb 276 . . . . 5 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 = (𝑃‘0) ↔ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃𝑁))))
6261anbi2d 740 . . . 4 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((𝑃‘0) ≠ (𝑃𝑁) ∧ 𝑈 = (𝑃‘0)) ↔ ((𝑃‘0) ≠ (𝑃𝑁) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃𝑁)))))
6350neneqd 2799 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → ¬ 𝑈 = (𝑃‘(𝑁 + 1)))
64 biorf 420 . . . . . . 7 𝑈 = (𝑃‘(𝑁 + 1)) → (𝑈 = (𝑃‘0) ↔ (𝑈 = (𝑃‘(𝑁 + 1)) ∨ 𝑈 = (𝑃‘0))))
6563, 64syl 17 . . . . . 6 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 = (𝑃‘0) ↔ (𝑈 = (𝑃‘(𝑁 + 1)) ∨ 𝑈 = (𝑃‘0))))
66 orcom 402 . . . . . 6 ((𝑈 = (𝑃‘(𝑁 + 1)) ∨ 𝑈 = (𝑃‘0)) ↔ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃‘(𝑁 + 1))))
6765, 66syl6bb 276 . . . . 5 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 = (𝑃‘0) ↔ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃‘(𝑁 + 1)))))
6867anbi2d 740 . . . 4 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((𝑃‘0) ≠ (𝑃‘(𝑁 + 1)) ∧ 𝑈 = (𝑃‘0)) ↔ ((𝑃‘0) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃‘(𝑁 + 1))))))
6956, 62, 683bitr3d 298 . . 3 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((𝑃‘0) ≠ (𝑃𝑁) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃𝑁))) ↔ ((𝑃‘0) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃‘(𝑁 + 1))))))
70 eupth2lem1 27078 . . . 4 (𝑈𝑉 → (𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ ((𝑃‘0) ≠ (𝑃𝑁) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃𝑁)))))
717, 70syl 17 . . 3 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ ((𝑃‘0) ≠ (𝑃𝑁) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃𝑁)))))
72 eupth2lem1 27078 . . . 4 (𝑈𝑉 → (𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}) ↔ ((𝑃‘0) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃‘(𝑁 + 1))))))
737, 72syl 17 . . 3 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}) ↔ ((𝑃‘0) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃‘(𝑁 + 1))))))
7469, 71, 733bitr4d 300 . 2 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
7539, 48, 743bitrd 294 1 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wnel 2897  {crab 2916  Vcvv 3200  c0 3915  ifcif 4086  {csn 4177  {cpr 4179  cop 4183   class class class wbr 4653  cres 5116  cima 5117  Fun wfun 5882  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939  2c2 11070  ...cfz 12326  ..^cfzo 12465  #chash 13117  cdvds 14983  Vtxcvtx 25874  iEdgciedg 25875  VtxDegcvtxdg 26361  Trailsctrls 26587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-xadd 11947  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-vtxdg 26362  df-wlks 26495  df-trls 26589
This theorem is referenced by:  eupth2lem3lem7  27094
  Copyright terms: Public domain W3C validator