MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smueqlem Structured version   Visualization version   GIF version

Theorem smueqlem 15212
Description: Any element of a sequence multiplication only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 20-Sep-2016.)
Hypotheses
Ref Expression
smueq.a (𝜑𝐴 ⊆ ℕ0)
smueq.b (𝜑𝐵 ⊆ ℕ0)
smueq.n (𝜑𝑁 ∈ ℕ0)
smueq.p 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
smueq.q 𝑄 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ (𝐵 ∩ (0..^𝑁)))})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
Assertion
Ref Expression
smueqlem (𝜑 → ((𝐴 smul 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))
Distinct variable groups:   𝑚,𝑛,𝑝,𝐴   𝐵,𝑚,𝑛,𝑝   𝑚,𝑁,𝑛,𝑝   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑚,𝑛,𝑝)   𝑄(𝑚,𝑛,𝑝)

Proof of Theorem smueqlem
Dummy variables 𝑘 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smueq.a . . . . . . . 8 (𝜑𝐴 ⊆ ℕ0)
21adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝐴 ⊆ ℕ0)
3 smueq.b . . . . . . . 8 (𝜑𝐵 ⊆ ℕ0)
43adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝐵 ⊆ ℕ0)
5 smueq.p . . . . . . 7 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
6 elfzouz 12474 . . . . . . . . 9 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ (ℤ‘0))
76adantl 482 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (ℤ‘0))
8 nn0uz 11722 . . . . . . . 8 0 = (ℤ‘0)
97, 8syl6eleqr 2712 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℕ0)
109nn0zd 11480 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℤ)
1110peano2zd 11485 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ∈ ℤ)
12 smueq.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
1312adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ0)
1413nn0zd 11480 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ)
15 elfzolt2 12479 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑁) → 𝑘 < 𝑁)
1615adantl 482 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 < 𝑁)
17 nn0ltp1le 11435 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑘 < 𝑁 ↔ (𝑘 + 1) ≤ 𝑁))
189, 13, 17syl2anc 693 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 < 𝑁 ↔ (𝑘 + 1) ≤ 𝑁))
1916, 18mpbid 222 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ≤ 𝑁)
20 eluz2 11693 . . . . . . . 8 (𝑁 ∈ (ℤ‘(𝑘 + 1)) ↔ ((𝑘 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑁))
2111, 14, 19, 20syl3anbrc 1246 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑁 ∈ (ℤ‘(𝑘 + 1)))
222, 4, 5, 9, 21smuval2 15204 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ (𝑃𝑁)))
2312, 8syl6eleq 2711 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘0))
24 eluzfz2b 12350 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘0) ↔ 𝑁 ∈ (0...𝑁))
2523, 24sylib 208 . . . . . . . . . 10 (𝜑𝑁 ∈ (0...𝑁))
26 fveq2 6191 . . . . . . . . . . . . . 14 (𝑥 = 0 → (𝑃𝑥) = (𝑃‘0))
2726ineq1d 3813 . . . . . . . . . . . . 13 (𝑥 = 0 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑃‘0) ∩ (0..^𝑁)))
28 fveq2 6191 . . . . . . . . . . . . . 14 (𝑥 = 0 → (𝑄𝑥) = (𝑄‘0))
2928ineq1d 3813 . . . . . . . . . . . . 13 (𝑥 = 0 → ((𝑄𝑥) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁)))
3027, 29eqeq12d 2637 . . . . . . . . . . . 12 (𝑥 = 0 → (((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁)) ↔ ((𝑃‘0) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁))))
3130imbi2d 330 . . . . . . . . . . 11 (𝑥 = 0 → ((𝜑 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁))) ↔ (𝜑 → ((𝑃‘0) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁)))))
32 fveq2 6191 . . . . . . . . . . . . . 14 (𝑥 = 𝑖 → (𝑃𝑥) = (𝑃𝑖))
3332ineq1d 3813 . . . . . . . . . . . . 13 (𝑥 = 𝑖 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑃𝑖) ∩ (0..^𝑁)))
34 fveq2 6191 . . . . . . . . . . . . . 14 (𝑥 = 𝑖 → (𝑄𝑥) = (𝑄𝑖))
3534ineq1d 3813 . . . . . . . . . . . . 13 (𝑥 = 𝑖 → ((𝑄𝑥) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁)))
3633, 35eqeq12d 2637 . . . . . . . . . . . 12 (𝑥 = 𝑖 → (((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁)) ↔ ((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁))))
3736imbi2d 330 . . . . . . . . . . 11 (𝑥 = 𝑖 → ((𝜑 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁))) ↔ (𝜑 → ((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁)))))
38 fveq2 6191 . . . . . . . . . . . . . 14 (𝑥 = (𝑖 + 1) → (𝑃𝑥) = (𝑃‘(𝑖 + 1)))
3938ineq1d 3813 . . . . . . . . . . . . 13 (𝑥 = (𝑖 + 1) → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)))
40 fveq2 6191 . . . . . . . . . . . . . 14 (𝑥 = (𝑖 + 1) → (𝑄𝑥) = (𝑄‘(𝑖 + 1)))
4140ineq1d 3813 . . . . . . . . . . . . 13 (𝑥 = (𝑖 + 1) → ((𝑄𝑥) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)))
4239, 41eqeq12d 2637 . . . . . . . . . . . 12 (𝑥 = (𝑖 + 1) → (((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁)) ↔ ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁))))
4342imbi2d 330 . . . . . . . . . . 11 (𝑥 = (𝑖 + 1) → ((𝜑 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁))) ↔ (𝜑 → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)))))
44 fveq2 6191 . . . . . . . . . . . . . 14 (𝑥 = 𝑁 → (𝑃𝑥) = (𝑃𝑁))
4544ineq1d 3813 . . . . . . . . . . . . 13 (𝑥 = 𝑁 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑃𝑁) ∩ (0..^𝑁)))
46 fveq2 6191 . . . . . . . . . . . . . 14 (𝑥 = 𝑁 → (𝑄𝑥) = (𝑄𝑁))
4746ineq1d 3813 . . . . . . . . . . . . 13 (𝑥 = 𝑁 → ((𝑄𝑥) ∩ (0..^𝑁)) = ((𝑄𝑁) ∩ (0..^𝑁)))
4845, 47eqeq12d 2637 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁)) ↔ ((𝑃𝑁) ∩ (0..^𝑁)) = ((𝑄𝑁) ∩ (0..^𝑁))))
4948imbi2d 330 . . . . . . . . . . 11 (𝑥 = 𝑁 → ((𝜑 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁))) ↔ (𝜑 → ((𝑃𝑁) ∩ (0..^𝑁)) = ((𝑄𝑁) ∩ (0..^𝑁)))))
501, 3, 5smup0 15201 . . . . . . . . . . . . . 14 (𝜑 → (𝑃‘0) = ∅)
51 inss1 3833 . . . . . . . . . . . . . . . 16 (𝐵 ∩ (0..^𝑁)) ⊆ 𝐵
5251, 3syl5ss 3614 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0)
53 smueq.q . . . . . . . . . . . . . . 15 𝑄 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ (𝐵 ∩ (0..^𝑁)))})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
541, 52, 53smup0 15201 . . . . . . . . . . . . . 14 (𝜑 → (𝑄‘0) = ∅)
5550, 54eqtr4d 2659 . . . . . . . . . . . . 13 (𝜑 → (𝑃‘0) = (𝑄‘0))
5655ineq1d 3813 . . . . . . . . . . . 12 (𝜑 → ((𝑃‘0) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁)))
5756a1i 11 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘0) → (𝜑 → ((𝑃‘0) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁))))
58 oveq1 6657 . . . . . . . . . . . . . . 15 (((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁)) → (((𝑃𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) = (((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))))
5958ineq1d 3813 . . . . . . . . . . . . . 14 (((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁)) → ((((𝑃𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)) = ((((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)))
601adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝐴 ⊆ ℕ0)
613adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝐵 ⊆ ℕ0)
62 elfzonn0 12512 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℕ0)
6362adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ ℕ0)
6460, 61, 5, 63smupp1 15202 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑃‘(𝑖 + 1)) = ((𝑃𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)}))
6564ineq1d 3813 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑁)) → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = (((𝑃𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)}) ∩ (0..^𝑁)))
661, 3, 5smupf 15200 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃:ℕ0⟶𝒫 ℕ0)
67 ffvelrn 6357 . . . . . . . . . . . . . . . . . . 19 ((𝑃:ℕ0⟶𝒫 ℕ0𝑖 ∈ ℕ0) → (𝑃𝑖) ∈ 𝒫 ℕ0)
6866, 62, 67syl2an 494 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑃𝑖) ∈ 𝒫 ℕ0)
6968elpwid 4170 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑃𝑖) ⊆ ℕ0)
70 ssrab2 3687 . . . . . . . . . . . . . . . . . 18 {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ⊆ ℕ0
7170a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ⊆ ℕ0)
7212adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ0)
7369, 71, 72sadeq 15194 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑁)) → (((𝑃𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)}) ∩ (0..^𝑁)) = ((((𝑃𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)))
7465, 73eqtrd 2656 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑁)) → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((((𝑃𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)))
7552adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0)
7660, 75, 53, 63smupp1 15202 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑄‘(𝑖 + 1)) = ((𝑄𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))}))
7776ineq1d 3813 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑁)) → ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)) = (((𝑄𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))}) ∩ (0..^𝑁)))
781, 52, 53smupf 15200 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑄:ℕ0⟶𝒫 ℕ0)
79 ffvelrn 6357 . . . . . . . . . . . . . . . . . . 19 ((𝑄:ℕ0⟶𝒫 ℕ0𝑖 ∈ ℕ0) → (𝑄𝑖) ∈ 𝒫 ℕ0)
8078, 62, 79syl2an 494 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑄𝑖) ∈ 𝒫 ℕ0)
8180elpwid 4170 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑄𝑖) ⊆ ℕ0)
82 ssrab2 3687 . . . . . . . . . . . . . . . . . 18 {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ⊆ ℕ0
8382a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ⊆ ℕ0)
8481, 83, 72sadeq 15194 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑁)) → (((𝑄𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))}) ∩ (0..^𝑁)) = ((((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁))) ∩ (0..^𝑁)))
85 inss2 3834 . . . . . . . . . . . . . . . . . . . . . 22 (ℕ0 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
8685sseli 3599 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) → 𝑛 ∈ (0..^𝑁))
8761adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝐵 ⊆ ℕ0)
8887sseld 3602 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛𝑖) ∈ 𝐵 → (𝑛𝑖) ∈ ℕ0))
89 elfzo0 12508 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 ∈ (0..^𝑁) ↔ (𝑛 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑛 < 𝑁))
9089simp2bi 1077 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 ∈ (0..^𝑁) → 𝑁 ∈ ℕ)
9190adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ)
92 elfzonn0 12512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℕ0)
9392adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℕ0)
9493nn0red 11352 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℝ)
9563adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑖 ∈ ℕ0)
9695nn0red 11352 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑖 ∈ ℝ)
9794, 96resubcld 10458 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (𝑛𝑖) ∈ ℝ)
9891nnred 11035 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑁 ∈ ℝ)
9995nn0ge0d 11354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 0 ≤ 𝑖)
10094, 96subge02d 10619 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (0 ≤ 𝑖 ↔ (𝑛𝑖) ≤ 𝑛))
10199, 100mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (𝑛𝑖) ≤ 𝑛)
102 elfzolt2 12479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 ∈ (0..^𝑁) → 𝑛 < 𝑁)
103102adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑛 < 𝑁)
10497, 94, 98, 101, 103lelttrd 10195 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (𝑛𝑖) < 𝑁)
10591, 104jca 554 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (𝑁 ∈ ℕ ∧ (𝑛𝑖) < 𝑁))
106 elfzo0 12508 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑛𝑖) ∈ (0..^𝑁) ↔ ((𝑛𝑖) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝑛𝑖) < 𝑁))
107 3anass 1042 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑛𝑖) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝑛𝑖) < 𝑁) ↔ ((𝑛𝑖) ∈ ℕ0 ∧ (𝑁 ∈ ℕ ∧ (𝑛𝑖) < 𝑁)))
108106, 107bitri 264 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛𝑖) ∈ (0..^𝑁) ↔ ((𝑛𝑖) ∈ ℕ0 ∧ (𝑁 ∈ ℕ ∧ (𝑛𝑖) < 𝑁)))
109108baib 944 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛𝑖) ∈ ℕ0 → ((𝑛𝑖) ∈ (0..^𝑁) ↔ (𝑁 ∈ ℕ ∧ (𝑛𝑖) < 𝑁)))
110105, 109syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛𝑖) ∈ ℕ0 → (𝑛𝑖) ∈ (0..^𝑁)))
11188, 110syld 47 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛𝑖) ∈ 𝐵 → (𝑛𝑖) ∈ (0..^𝑁)))
112111pm4.71rd 667 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛𝑖) ∈ 𝐵 ↔ ((𝑛𝑖) ∈ (0..^𝑁) ∧ (𝑛𝑖) ∈ 𝐵)))
113 ancom 466 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛𝑖) ∈ (0..^𝑁) ∧ (𝑛𝑖) ∈ 𝐵) ↔ ((𝑛𝑖) ∈ 𝐵 ∧ (𝑛𝑖) ∈ (0..^𝑁)))
114 elin 3796 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)) ↔ ((𝑛𝑖) ∈ 𝐵 ∧ (𝑛𝑖) ∈ (0..^𝑁)))
115113, 114bitr4i 267 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛𝑖) ∈ (0..^𝑁) ∧ (𝑛𝑖) ∈ 𝐵) ↔ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))
116112, 115syl6rbb 277 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)) ↔ (𝑛𝑖) ∈ 𝐵))
117116anbi2d 740 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁))) ↔ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)))
11886, 117sylan2 491 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^𝑁))) → ((𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁))) ↔ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)))
119118rabbidva 3188 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑁)) → {𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} = {𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)})
120 inrab2 3900 . . . . . . . . . . . . . . . . . . 19 ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁)) = {𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))}
121 inrab2 3900 . . . . . . . . . . . . . . . . . . 19 ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁)) = {𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)}
122119, 120, 1213eqtr4g 2681 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁)) = ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁)))
123122oveq2d 6666 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → (((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁))) = (((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))))
124123ineq1d 3813 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑁)) → ((((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁))) ∩ (0..^𝑁)) = ((((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)))
12577, 84, 1243eqtrd 2660 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑁)) → ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)))
12674, 125eqeq12d 2637 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑁)) → (((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)) ↔ ((((𝑃𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)) = ((((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁))))
12759, 126syl5ibr 236 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑁)) → (((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁)) → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁))))
128127expcom 451 . . . . . . . . . . . 12 (𝑖 ∈ (0..^𝑁) → (𝜑 → (((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁)) → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)))))
129128a2d 29 . . . . . . . . . . 11 (𝑖 ∈ (0..^𝑁) → ((𝜑 → ((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁))) → (𝜑 → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)))))
13031, 37, 43, 49, 57, 129fzind2 12586 . . . . . . . . . 10 (𝑁 ∈ (0...𝑁) → (𝜑 → ((𝑃𝑁) ∩ (0..^𝑁)) = ((𝑄𝑁) ∩ (0..^𝑁))))
13125, 130mpcom 38 . . . . . . . . 9 (𝜑 → ((𝑃𝑁) ∩ (0..^𝑁)) = ((𝑄𝑁) ∩ (0..^𝑁)))
132131adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝑃𝑁) ∩ (0..^𝑁)) = ((𝑄𝑁) ∩ (0..^𝑁)))
133132eleq2d 2687 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ ((𝑃𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ ((𝑄𝑁) ∩ (0..^𝑁))))
134 elin 3796 . . . . . . . . 9 (𝑘 ∈ ((𝑃𝑁) ∩ (0..^𝑁)) ↔ (𝑘 ∈ (𝑃𝑁) ∧ 𝑘 ∈ (0..^𝑁)))
135134rbaib 947 . . . . . . . 8 (𝑘 ∈ (0..^𝑁) → (𝑘 ∈ ((𝑃𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (𝑃𝑁)))
136135adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ ((𝑃𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (𝑃𝑁)))
137 elin 3796 . . . . . . . . 9 (𝑘 ∈ ((𝑄𝑁) ∩ (0..^𝑁)) ↔ (𝑘 ∈ (𝑄𝑁) ∧ 𝑘 ∈ (0..^𝑁)))
138137rbaib 947 . . . . . . . 8 (𝑘 ∈ (0..^𝑁) → (𝑘 ∈ ((𝑄𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (𝑄𝑁)))
139138adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ ((𝑄𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (𝑄𝑁)))
140133, 136, 1393bitr3d 298 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝑃𝑁) ↔ 𝑘 ∈ (𝑄𝑁)))
14152adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0)
1422, 141, 53, 13smupval 15210 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑄𝑁) = ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))))
143142eleq2d 2687 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝑄𝑁) ↔ 𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁)))))
14422, 140, 1433bitrd 294 . . . . 5 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁)))))
145144ex 450 . . . 4 (𝜑 → (𝑘 ∈ (0..^𝑁) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))))))
146145pm5.32rd 672 . . 3 (𝜑 → ((𝑘 ∈ (𝐴 smul 𝐵) ∧ 𝑘 ∈ (0..^𝑁)) ↔ (𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∧ 𝑘 ∈ (0..^𝑁))))
147 elin 3796 . . 3 (𝑘 ∈ ((𝐴 smul 𝐵) ∩ (0..^𝑁)) ↔ (𝑘 ∈ (𝐴 smul 𝐵) ∧ 𝑘 ∈ (0..^𝑁)))
148 elin 3796 . . 3 (𝑘 ∈ (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ↔ (𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∧ 𝑘 ∈ (0..^𝑁)))
149146, 147, 1483bitr4g 303 . 2 (𝜑 → (𝑘 ∈ ((𝐴 smul 𝐵) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
150149eqrdv 2620 1 (𝜑 → ((𝐴 smul 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916  cin 3573  wss 3574  c0 3915  ifcif 4086  𝒫 cpw 4158   class class class wbr 4653  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cmin 10266  cn 11020  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  ..^cfzo 12465  seqcseq 12801   sadd csad 15142   smul csmu 15143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-fal 1489  df-had 1533  df-cad 1546  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-bits 15144  df-sad 15173  df-smu 15198
This theorem is referenced by:  smueq  15213
  Copyright terms: Public domain W3C validator