| Step | Hyp | Ref
| Expression |
| 1 | | rphalfcl 11858 |
. . 3
⊢ (𝑌 ∈ ℝ+
→ (𝑌 / 2) ∈
ℝ+) |
| 2 | | ftc1anc.g |
. . . 4
⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) |
| 3 | | ftc1anc.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 4 | | ftc1anc.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 5 | | ftc1anc.le |
. . . 4
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 6 | | ftc1anc.s |
. . . 4
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) |
| 7 | | ftc1anc.d |
. . . 4
⊢ (𝜑 → 𝐷 ⊆ ℝ) |
| 8 | | ftc1anc.i |
. . . 4
⊢ (𝜑 → 𝐹 ∈
𝐿1) |
| 9 | | ftc1anc.f |
. . . 4
⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
| 10 | 2, 3, 4, 5, 6, 7, 8, 9 | ftc1anclem5 33489 |
. . 3
⊢ ((𝜑 ∧ (𝑌 / 2) ∈ ℝ+) →
∃𝑓 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2)) |
| 11 | 1, 10 | sylan2 491 |
. 2
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
∃𝑓 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2)) |
| 12 | | eqid 2622 |
. . . . 5
⊢ (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡) d𝑡) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡) d𝑡) |
| 13 | | ax-icn 9995 |
. . . . . . . 8
⊢ i ∈
ℂ |
| 14 | | ine0 10465 |
. . . . . . . 8
⊢ i ≠
0 |
| 15 | 13, 14 | reccli 10755 |
. . . . . . 7
⊢ (1 / i)
∈ ℂ |
| 16 | 15 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (1 / i) ∈
ℂ) |
| 17 | 9 | ffvelrnda 6359 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝐹‘𝑦) ∈ ℂ) |
| 18 | 9 | feqmptd 6249 |
. . . . . . 7
⊢ (𝜑 → 𝐹 = (𝑦 ∈ 𝐷 ↦ (𝐹‘𝑦))) |
| 19 | 18, 8 | eqeltrrd 2702 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ (𝐹‘𝑦)) ∈
𝐿1) |
| 20 | | divrec2 10702 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑦) ∈ ℂ ∧ i ∈ ℂ ∧
i ≠ 0) → ((𝐹‘𝑦) / i) = ((1 / i) · (𝐹‘𝑦))) |
| 21 | 13, 14, 20 | mp3an23 1416 |
. . . . . . . . 9
⊢ ((𝐹‘𝑦) ∈ ℂ → ((𝐹‘𝑦) / i) = ((1 / i) · (𝐹‘𝑦))) |
| 22 | 17, 21 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝐹‘𝑦) / i) = ((1 / i) · (𝐹‘𝑦))) |
| 23 | 22 | mpteq2dva 4744 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ ((𝐹‘𝑦) / i)) = (𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))) |
| 24 | | iblmbf 23534 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐷 ↦ (𝐹‘𝑦)) ∈ 𝐿1 → (𝑦 ∈ 𝐷 ↦ (𝐹‘𝑦)) ∈ MblFn) |
| 25 | 19, 24 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ (𝐹‘𝑦)) ∈ MblFn) |
| 26 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) |
| 27 | 26 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑥 → (ℜ‘(𝐹‘𝑦)) = (ℜ‘(𝐹‘𝑥))) |
| 28 | 27 | cbvmptv 4750 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) = (𝑥 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑥))) |
| 29 | 28 | eleq1i 2692 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn ↔ (𝑥 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑥))) ∈ MblFn) |
| 30 | 17 | recld 13934 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (ℜ‘(𝐹‘𝑦)) ∈ ℝ) |
| 31 | 30 | recnd 10068 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (ℜ‘(𝐹‘𝑦)) ∈ ℂ) |
| 32 | 31 | adantlr 751 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑥))) ∈ MblFn) ∧ 𝑦 ∈ 𝐷) → (ℜ‘(𝐹‘𝑦)) ∈ ℂ) |
| 33 | 29 | biimpri 218 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑥))) ∈ MblFn → (𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn) |
| 34 | 33 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑥))) ∈ MblFn) → (𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn) |
| 35 | 32, 34 | mbfneg 23417 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑥))) ∈ MblFn) → (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn) |
| 36 | 29, 35 | sylan2b 492 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn) → (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn) |
| 37 | 9 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ∈ ℂ) |
| 38 | 37 | recld 13934 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (ℜ‘(𝐹‘𝑥)) ∈ ℝ) |
| 39 | 38 | recnd 10068 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (ℜ‘(𝐹‘𝑥)) ∈ ℂ) |
| 40 | 39 | negnegd 10383 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → --(ℜ‘(𝐹‘𝑥)) = (ℜ‘(𝐹‘𝑥))) |
| 41 | 40 | mpteq2dva 4744 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ --(ℜ‘(𝐹‘𝑥))) = (𝑥 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑥)))) |
| 42 | 41, 28 | syl6eqr 2674 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ --(ℜ‘(𝐹‘𝑥))) = (𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦)))) |
| 43 | 42 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn) → (𝑥 ∈ 𝐷 ↦ --(ℜ‘(𝐹‘𝑥))) = (𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦)))) |
| 44 | | negex 10279 |
. . . . . . . . . . . . . . . 16
⊢
-(ℜ‘(𝐹‘𝑥)) ∈ V |
| 45 | 44 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn) ∧ 𝑥 ∈ 𝐷) → -(ℜ‘(𝐹‘𝑥)) ∈ V) |
| 46 | 27 | negeqd 10275 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑥 → -(ℜ‘(𝐹‘𝑦)) = -(ℜ‘(𝐹‘𝑥))) |
| 47 | 46 | cbvmptv 4750 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) = (𝑥 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑥))) |
| 48 | 47 | eleq1i 2692 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn ↔ (𝑥 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑥))) ∈ MblFn) |
| 49 | 48 | biimpi 206 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn → (𝑥 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑥))) ∈ MblFn) |
| 50 | 49 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn) → (𝑥 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑥))) ∈ MblFn) |
| 51 | 45, 50 | mbfneg 23417 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn) → (𝑥 ∈ 𝐷 ↦ --(ℜ‘(𝐹‘𝑥))) ∈ MblFn) |
| 52 | 43, 51 | eqeltrrd 2702 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn) → (𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn) |
| 53 | 36, 52 | impbida 877 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn ↔ (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn)) |
| 54 | | divcl 10691 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹‘𝑦) ∈ ℂ ∧ i ∈ ℂ ∧
i ≠ 0) → ((𝐹‘𝑦) / i) ∈ ℂ) |
| 55 | | imre 13848 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹‘𝑦) / i) ∈ ℂ →
(ℑ‘((𝐹‘𝑦) / i)) = (ℜ‘(-i · ((𝐹‘𝑦) / i)))) |
| 56 | 54, 55 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹‘𝑦) ∈ ℂ ∧ i ∈ ℂ ∧
i ≠ 0) → (ℑ‘((𝐹‘𝑦) / i)) = (ℜ‘(-i · ((𝐹‘𝑦) / i)))) |
| 57 | 13, 14, 56 | mp3an23 1416 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑦) ∈ ℂ →
(ℑ‘((𝐹‘𝑦) / i)) = (ℜ‘(-i · ((𝐹‘𝑦) / i)))) |
| 58 | 13, 14, 54 | mp3an23 1416 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘𝑦) ∈ ℂ → ((𝐹‘𝑦) / i) ∈ ℂ) |
| 59 | | mulneg1 10466 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((i
∈ ℂ ∧ ((𝐹‘𝑦) / i) ∈ ℂ) → (-i ·
((𝐹‘𝑦) / i)) = -(i · ((𝐹‘𝑦) / i))) |
| 60 | 13, 58, 59 | sylancr 695 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑦) ∈ ℂ → (-i · ((𝐹‘𝑦) / i)) = -(i · ((𝐹‘𝑦) / i))) |
| 61 | | divcan2 10693 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹‘𝑦) ∈ ℂ ∧ i ∈ ℂ ∧
i ≠ 0) → (i · ((𝐹‘𝑦) / i)) = (𝐹‘𝑦)) |
| 62 | 13, 14, 61 | mp3an23 1416 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘𝑦) ∈ ℂ → (i · ((𝐹‘𝑦) / i)) = (𝐹‘𝑦)) |
| 63 | 62 | negeqd 10275 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑦) ∈ ℂ → -(i · ((𝐹‘𝑦) / i)) = -(𝐹‘𝑦)) |
| 64 | 60, 63 | eqtrd 2656 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑦) ∈ ℂ → (-i · ((𝐹‘𝑦) / i)) = -(𝐹‘𝑦)) |
| 65 | 64 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑦) ∈ ℂ → (ℜ‘(-i
· ((𝐹‘𝑦) / i))) = (ℜ‘-(𝐹‘𝑦))) |
| 66 | | reneg 13865 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑦) ∈ ℂ → (ℜ‘-(𝐹‘𝑦)) = -(ℜ‘(𝐹‘𝑦))) |
| 67 | 57, 65, 66 | 3eqtrd 2660 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑦) ∈ ℂ →
(ℑ‘((𝐹‘𝑦) / i)) = -(ℜ‘(𝐹‘𝑦))) |
| 68 | 17, 67 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (ℑ‘((𝐹‘𝑦) / i)) = -(ℜ‘(𝐹‘𝑦))) |
| 69 | 68 | mpteq2dva 4744 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ (ℑ‘((𝐹‘𝑦) / i))) = (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦)))) |
| 70 | 69 | eleq1d 2686 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ (ℑ‘((𝐹‘𝑦) / i))) ∈ MblFn ↔ (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn)) |
| 71 | 53, 70 | bitr4d 271 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn ↔ (𝑦 ∈ 𝐷 ↦ (ℑ‘((𝐹‘𝑦) / i))) ∈ MblFn)) |
| 72 | | imval 13847 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑦) ∈ ℂ → (ℑ‘(𝐹‘𝑦)) = (ℜ‘((𝐹‘𝑦) / i))) |
| 73 | 17, 72 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (ℑ‘(𝐹‘𝑦)) = (ℜ‘((𝐹‘𝑦) / i))) |
| 74 | 73 | mpteq2dva 4744 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ (ℑ‘(𝐹‘𝑦))) = (𝑦 ∈ 𝐷 ↦ (ℜ‘((𝐹‘𝑦) / i)))) |
| 75 | 74 | eleq1d 2686 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ (ℑ‘(𝐹‘𝑦))) ∈ MblFn ↔ (𝑦 ∈ 𝐷 ↦ (ℜ‘((𝐹‘𝑦) / i))) ∈ MblFn)) |
| 76 | 71, 75 | anbi12d 747 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn ∧ (𝑦 ∈ 𝐷 ↦ (ℑ‘(𝐹‘𝑦))) ∈ MblFn) ↔ ((𝑦 ∈ 𝐷 ↦ (ℑ‘((𝐹‘𝑦) / i))) ∈ MblFn ∧ (𝑦 ∈ 𝐷 ↦ (ℜ‘((𝐹‘𝑦) / i))) ∈ MblFn))) |
| 77 | | ancom 466 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝐷 ↦ (ℑ‘((𝐹‘𝑦) / i))) ∈ MblFn ∧ (𝑦 ∈ 𝐷 ↦ (ℜ‘((𝐹‘𝑦) / i))) ∈ MblFn) ↔ ((𝑦 ∈ 𝐷 ↦ (ℜ‘((𝐹‘𝑦) / i))) ∈ MblFn ∧ (𝑦 ∈ 𝐷 ↦ (ℑ‘((𝐹‘𝑦) / i))) ∈ MblFn)) |
| 78 | 76, 77 | syl6bb 276 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn ∧ (𝑦 ∈ 𝐷 ↦ (ℑ‘(𝐹‘𝑦))) ∈ MblFn) ↔ ((𝑦 ∈ 𝐷 ↦ (ℜ‘((𝐹‘𝑦) / i))) ∈ MblFn ∧ (𝑦 ∈ 𝐷 ↦ (ℑ‘((𝐹‘𝑦) / i))) ∈ MblFn))) |
| 79 | 17 | ismbfcn2 23406 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ (𝐹‘𝑦)) ∈ MblFn ↔ ((𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn ∧ (𝑦 ∈ 𝐷 ↦ (ℑ‘(𝐹‘𝑦))) ∈ MblFn))) |
| 80 | 17, 58 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝐹‘𝑦) / i) ∈ ℂ) |
| 81 | 80 | ismbfcn2 23406 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ ((𝐹‘𝑦) / i)) ∈ MblFn ↔ ((𝑦 ∈ 𝐷 ↦ (ℜ‘((𝐹‘𝑦) / i))) ∈ MblFn ∧ (𝑦 ∈ 𝐷 ↦ (ℑ‘((𝐹‘𝑦) / i))) ∈ MblFn))) |
| 82 | 78, 79, 81 | 3bitr4d 300 |
. . . . . . . 8
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ (𝐹‘𝑦)) ∈ MblFn ↔ (𝑦 ∈ 𝐷 ↦ ((𝐹‘𝑦) / i)) ∈ MblFn)) |
| 83 | 25, 82 | mpbid 222 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ ((𝐹‘𝑦) / i)) ∈ MblFn) |
| 84 | 23, 83 | eqeltrrd 2702 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦))) ∈ MblFn) |
| 85 | 16, 17, 19, 84 | iblmulc2nc 33475 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦))) ∈
𝐿1) |
| 86 | | mulcl 10020 |
. . . . . . 7
⊢ (((1 / i)
∈ ℂ ∧ (𝐹‘𝑦) ∈ ℂ) → ((1 / i) ·
(𝐹‘𝑦)) ∈ ℂ) |
| 87 | 15, 17, 86 | sylancr 695 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((1 / i) · (𝐹‘𝑦)) ∈ ℂ) |
| 88 | | eqid 2622 |
. . . . . 6
⊢ (𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦))) = (𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦))) |
| 89 | 87, 88 | fmptd 6385 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦))):𝐷⟶ℂ) |
| 90 | 12, 3, 4, 5, 6, 7, 85, 89 | ftc1anclem5 33489 |
. . . 4
⊢ ((𝜑 ∧ (𝑌 / 2) ∈ ℝ+) →
∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) |
| 91 | 1, 90 | sylan2 491 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) |
| 92 | 9 | ffvelrnda 6359 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (𝐹‘𝑡) ∈ ℂ) |
| 93 | | 0cnd 10033 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝑡 ∈ 𝐷) → 0 ∈ ℂ) |
| 94 | 92, 93 | ifclda 4120 |
. . . . . . . . . . . 12
⊢ (𝜑 → if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) ∈ ℂ) |
| 95 | | imval 13847 |
. . . . . . . . . . . 12
⊢ (if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) ∈ ℂ →
(ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) = (ℜ‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) / i))) |
| 96 | 94, 95 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) = (ℜ‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) / i))) |
| 97 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑡 → (𝐹‘𝑦) = (𝐹‘𝑡)) |
| 98 | 97 | oveq2d 6666 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑡 → ((1 / i) · (𝐹‘𝑦)) = ((1 / i) · (𝐹‘𝑡))) |
| 99 | | ovex 6678 |
. . . . . . . . . . . . . . . . 17
⊢ ((1 / i)
· (𝐹‘𝑡)) ∈ V |
| 100 | 98, 88, 99 | fvmpt 6282 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ 𝐷 → ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡) = ((1 / i) · (𝐹‘𝑡))) |
| 101 | 100 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡) = ((1 / i) · (𝐹‘𝑡))) |
| 102 | | divrec2 10702 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹‘𝑡) ∈ ℂ ∧ i ∈ ℂ ∧
i ≠ 0) → ((𝐹‘𝑡) / i) = ((1 / i) · (𝐹‘𝑡))) |
| 103 | 13, 14, 102 | mp3an23 1416 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑡) ∈ ℂ → ((𝐹‘𝑡) / i) = ((1 / i) · (𝐹‘𝑡))) |
| 104 | 92, 103 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → ((𝐹‘𝑡) / i) = ((1 / i) · (𝐹‘𝑡))) |
| 105 | 101, 104 | eqtr4d 2659 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡) = ((𝐹‘𝑡) / i)) |
| 106 | 105 | ifeq1da 4116 |
. . . . . . . . . . . . 13
⊢ (𝜑 → if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0) = if(𝑡 ∈ 𝐷, ((𝐹‘𝑡) / i), 0)) |
| 107 | | ovif 6737 |
. . . . . . . . . . . . . 14
⊢ (if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) / i) = if(𝑡 ∈ 𝐷, ((𝐹‘𝑡) / i), (0 / i)) |
| 108 | 13, 14 | div0i 10759 |
. . . . . . . . . . . . . . 15
⊢ (0 / i) =
0 |
| 109 | | ifeq2 4091 |
. . . . . . . . . . . . . . 15
⊢ ((0 / i)
= 0 → if(𝑡 ∈
𝐷, ((𝐹‘𝑡) / i), (0 / i)) = if(𝑡 ∈ 𝐷, ((𝐹‘𝑡) / i), 0)) |
| 110 | 108, 109 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ if(𝑡 ∈ 𝐷, ((𝐹‘𝑡) / i), (0 / i)) = if(𝑡 ∈ 𝐷, ((𝐹‘𝑡) / i), 0) |
| 111 | 107, 110 | eqtri 2644 |
. . . . . . . . . . . . 13
⊢ (if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) / i) = if(𝑡 ∈ 𝐷, ((𝐹‘𝑡) / i), 0) |
| 112 | 106, 111 | syl6eqr 2674 |
. . . . . . . . . . . 12
⊢ (𝜑 → if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0) = (if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) / i)) |
| 113 | 112 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) = (ℜ‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) / i))) |
| 114 | 96, 113 | eqtr4d 2659 |
. . . . . . . . . 10
⊢ (𝜑 → (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) = (ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0))) |
| 115 | 114 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝜑 → ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)) = ((ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) − (𝑔‘𝑡))) |
| 116 | 115 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝜑 →
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) = (abs‘((ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) − (𝑔‘𝑡)))) |
| 117 | 116 | mpteq2dv 4745 |
. . . . . . 7
⊢ (𝜑 → (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) − (𝑔‘𝑡))))) |
| 118 | 117 | fveq2d 6195 |
. . . . . 6
⊢ (𝜑 →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) − (𝑔‘𝑡)))))) |
| 119 | 118 | breq1d 4663 |
. . . . 5
⊢ (𝜑 →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2) ↔ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2))) |
| 120 | 119 | rexbidv 3052 |
. . . 4
⊢ (𝜑 → (∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2) ↔ ∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2))) |
| 121 | 120 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
(∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2) ↔ ∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2))) |
| 122 | 91, 121 | mpbird 247 |
. 2
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) |
| 123 | | reeanv 3107 |
. . 3
⊢
(∃𝑓 ∈ dom
∫1∃𝑔
∈ dom ∫1((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) ↔ (∃𝑓 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2) ∧ ∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2))) |
| 124 | | eleq1w 2684 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑡 → (𝑥 ∈ 𝐷 ↔ 𝑡 ∈ 𝐷)) |
| 125 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑡 → (𝐹‘𝑥) = (𝐹‘𝑡)) |
| 126 | 124, 125 | ifbieq1d 4109 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑡 → if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0) = if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) |
| 127 | 126 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑡 → (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)) = (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
| 128 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) = (𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) |
| 129 | | fvex 6201 |
. . . . . . . . . . . . . . 15
⊢
(ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ V |
| 130 | 127, 128,
129 | fvmpt 6282 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ ℝ → ((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) = (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
| 131 | 130 | oveq1d 6665 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ ℝ → (((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑓‘𝑡)) = ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) |
| 132 | 131 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ ℝ →
(abs‘(((𝑥 ∈
ℝ ↦ (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑓‘𝑡))) = (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) |
| 133 | 132 | mpteq2ia 4740 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ ℝ ↦
(abs‘(((𝑥 ∈
ℝ ↦ (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑓‘𝑡)))) = (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) |
| 134 | 133 | fveq2i 6194 |
. . . . . . . . . 10
⊢
(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑓‘𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) |
| 135 | | rembl 23308 |
. . . . . . . . . . . . . . . . 17
⊢ ℝ
∈ dom vol |
| 136 | 135 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ℝ ∈ dom
vol) |
| 137 | | 0cnd 10033 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐷) → 0 ∈ ℂ) |
| 138 | 37, 137 | ifclda 4120 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0) ∈ ℂ) |
| 139 | 138 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0) ∈ ℂ) |
| 140 | | eldifn 3733 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (ℝ ∖ 𝐷) → ¬ 𝑥 ∈ 𝐷) |
| 141 | 140 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐷)) → ¬ 𝑥 ∈ 𝐷) |
| 142 | 141 | iffalsed 4097 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐷)) → if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0) = 0) |
| 143 | 9 | feqmptd 6249 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥))) |
| 144 | | iftrue 4092 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ 𝐷 → if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0) = (𝐹‘𝑥)) |
| 145 | 144 | mpteq2ia 4740 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)) = (𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥)) |
| 146 | 143, 145 | syl6eqr 2674 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0))) |
| 147 | 146, 8 | eqeltrrd 2702 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)) ∈
𝐿1) |
| 148 | 7, 136, 139, 142, 147 | iblss2 23572 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)) ∈
𝐿1) |
| 149 | 138 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0) ∈ ℂ) |
| 150 | 149 | iblcn 23565 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)) ∈ 𝐿1 ↔
((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈
𝐿1))) |
| 151 | 148, 150 | mpbid 222 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈
𝐿1)) |
| 152 | 151 | simpld 475 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈
𝐿1) |
| 153 | 149 | recld 13934 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)) ∈ ℝ) |
| 154 | 153, 128 | fmptd 6385 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥),
0))):ℝ⟶ℝ) |
| 155 | 152, 154 | jca 554 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥),
0))):ℝ⟶ℝ)) |
| 156 | | ftc1anclem4 33488 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑥 ∈ ℝ
↦ (ℜ‘if(𝑥
∈ 𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))):ℝ⟶ℝ) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑓‘𝑡))))) ∈ ℝ) |
| 157 | 156 | 3expb 1266 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ dom ∫1
∧ ((𝑥 ∈ ℝ
↦ (ℜ‘if(𝑥
∈ 𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))):ℝ⟶ℝ)) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑓‘𝑡))))) ∈ ℝ) |
| 158 | 155, 157 | sylan2 491 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ dom ∫1
∧ 𝜑) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑓‘𝑡))))) ∈ ℝ) |
| 159 | 158 | ancoms 469 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑓‘𝑡))))) ∈ ℝ) |
| 160 | 134, 159 | syl5eqelr 2706 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) ∈ ℝ) |
| 161 | 126 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑡 → (ℑ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)) = (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
| 162 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) = (𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) |
| 163 | | fvex 6201 |
. . . . . . . . . . . . . . 15
⊢
(ℑ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ V |
| 164 | 161, 162,
163 | fvmpt 6282 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ ℝ → ((𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) = (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
| 165 | 164 | oveq1d 6665 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ ℝ → (((𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑔‘𝑡)) = ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) |
| 166 | 165 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ ℝ →
(abs‘(((𝑥 ∈
ℝ ↦ (ℑ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑔‘𝑡))) = (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) |
| 167 | 166 | mpteq2ia 4740 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ ℝ ↦
(abs‘(((𝑥 ∈
ℝ ↦ (ℑ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑔‘𝑡)))) = (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) |
| 168 | 167 | fveq2i 6194 |
. . . . . . . . . 10
⊢
(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑔‘𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) |
| 169 | 151 | simprd 479 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈
𝐿1) |
| 170 | 138 | imcld 13935 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (ℑ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)) ∈ ℝ) |
| 171 | 170 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)) ∈ ℝ) |
| 172 | 171, 162 | fmptd 6385 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥),
0))):ℝ⟶ℝ) |
| 173 | 169, 172 | jca 554 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥),
0))):ℝ⟶ℝ)) |
| 174 | | ftc1anclem4 33488 |
. . . . . . . . . . . . 13
⊢ ((𝑔 ∈ dom ∫1
∧ (𝑥 ∈ ℝ
↦ (ℑ‘if(𝑥
∈ 𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))):ℝ⟶ℝ) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑔‘𝑡))))) ∈ ℝ) |
| 175 | 174 | 3expb 1266 |
. . . . . . . . . . . 12
⊢ ((𝑔 ∈ dom ∫1
∧ ((𝑥 ∈ ℝ
↦ (ℑ‘if(𝑥
∈ 𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))):ℝ⟶ℝ)) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑔‘𝑡))))) ∈ ℝ) |
| 176 | 173, 175 | sylan2 491 |
. . . . . . . . . . 11
⊢ ((𝑔 ∈ dom ∫1
∧ 𝜑) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑔‘𝑡))))) ∈ ℝ) |
| 177 | 176 | ancoms 469 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑔‘𝑡))))) ∈ ℝ) |
| 178 | 168, 177 | syl5eqelr 2706 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ ℝ) |
| 179 | 160, 178 | anim12dan 882 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) ∈ ℝ ∧
(∫2‘(𝑡
∈ ℝ ↦ (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ ℝ)) |
| 180 | 1 | rpred 11872 |
. . . . . . . . 9
⊢ (𝑌 ∈ ℝ+
→ (𝑌 / 2) ∈
ℝ) |
| 181 | 180, 180 | jca 554 |
. . . . . . . 8
⊢ (𝑌 ∈ ℝ+
→ ((𝑌 / 2) ∈
ℝ ∧ (𝑌 / 2)
∈ ℝ)) |
| 182 | | lt2add 10513 |
. . . . . . . 8
⊢
((((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) ∈ ℝ ∧
(∫2‘(𝑡
∈ ℝ ↦ (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ ℝ) ∧ ((𝑌 / 2) ∈ ℝ ∧
(𝑌 / 2) ∈ ℝ))
→ (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2)))) |
| 183 | 179, 181,
182 | syl2an 494 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑌 ∈
ℝ+) → (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2)))) |
| 184 | 183 | an32s 846 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2)))) |
| 185 | 94 | recld 13934 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ) |
| 186 | 185 | recnd 10068 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ) |
| 187 | | i1ff 23443 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ dom ∫1
→ 𝑓:ℝ⟶ℝ) |
| 188 | 187 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑓‘𝑡) ∈
ℝ) |
| 189 | 188 | recnd 10068 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑓‘𝑡) ∈
ℂ) |
| 190 | | subcl 10280 |
. . . . . . . . . . . . . . . . . 18
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ ∧ (𝑓‘𝑡) ∈ ℂ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ ℂ) |
| 191 | 186, 189,
190 | syl2an 494 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ ℂ) |
| 192 | 191 | anassrs 680 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ ℂ) |
| 193 | 192 | adantlrr 757 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ ((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ ℂ) |
| 194 | 94 | imcld 13935 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ) |
| 195 | 194 | recnd 10068 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ) |
| 196 | | i1ff 23443 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 ∈ dom ∫1
→ 𝑔:ℝ⟶ℝ) |
| 197 | 196 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑔‘𝑡) ∈
ℝ) |
| 198 | 197 | recnd 10068 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑔‘𝑡) ∈
ℂ) |
| 199 | | subcl 10280 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ ∧ (𝑔‘𝑡) ∈ ℂ) →
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)) ∈ ℂ) |
| 200 | 195, 198,
199 | syl2an 494 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) →
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)) ∈ ℂ) |
| 201 | 200 | anassrs 680 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)) ∈ ℂ) |
| 202 | | mulcl 10020 |
. . . . . . . . . . . . . . . . 17
⊢ ((i
∈ ℂ ∧ ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)) ∈ ℂ) → (i ·
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) ∈ ℂ) |
| 203 | 13, 201, 202 | sylancr 695 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (i
· ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) ∈ ℂ) |
| 204 | 203 | adantlrl 756 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) ∈ ℂ) |
| 205 | 193, 204 | addcld 10059 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) ∈ ℂ) |
| 206 | 205 | abscld 14175 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ ℝ) |
| 207 | 206 | rexrd 10089 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈
ℝ*) |
| 208 | 205 | absge0d 14183 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ 0 ≤ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) |
| 209 | | elxrge0 12281 |
. . . . . . . . . . . 12
⊢
((abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ (0[,]+∞) ↔
((abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ ℝ* ∧ 0 ≤
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) |
| 210 | 207, 208,
209 | sylanbrc 698 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ (0[,]+∞)) |
| 211 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) = (𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) |
| 212 | 210, 211 | fmptd 6385 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))):ℝ⟶(0[,]+∞)) |
| 213 | | icossicc 12260 |
. . . . . . . . . . . . 13
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
| 214 | | ge0addcl 12284 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (0[,)+∞) ∧
𝑦 ∈ (0[,)+∞))
→ (𝑥 + 𝑦) ∈
(0[,)+∞)) |
| 215 | 213, 214 | sseldi 3601 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ (0[,)+∞) ∧
𝑦 ∈ (0[,)+∞))
→ (𝑥 + 𝑦) ∈
(0[,]+∞)) |
| 216 | 215 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑥 ∈
(0[,)+∞) ∧ 𝑦
∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,]+∞)) |
| 217 | 192 | abscld 14175 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) ∈ ℝ) |
| 218 | 192 | absge0d 14183 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → 0 ≤
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) |
| 219 | | elrege0 12278 |
. . . . . . . . . . . . . 14
⊢
((abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) ∈ (0[,)+∞) ↔
((abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) ∈ ℝ ∧ 0 ≤
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) |
| 220 | 217, 218,
219 | sylanbrc 698 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) ∈ (0[,)+∞)) |
| 221 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) = (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) |
| 222 | 220, 221 | fmptd 6385 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))):ℝ⟶(0[,)+∞)) |
| 223 | 222 | adantrr 753 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))):ℝ⟶(0[,)+∞)) |
| 224 | 201 | abscld 14175 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) ∈ ℝ) |
| 225 | 201 | absge0d 14183 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → 0 ≤
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) |
| 226 | | elrege0 12278 |
. . . . . . . . . . . . . 14
⊢
((abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) ∈ (0[,)+∞) ↔
((abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) ∈ ℝ ∧ 0 ≤
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) |
| 227 | 224, 225,
226 | sylanbrc 698 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) ∈ (0[,)+∞)) |
| 228 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) |
| 229 | 227, 228 | fmptd 6385 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))):ℝ⟶(0[,)+∞)) |
| 230 | 229 | adantrl 752 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))):ℝ⟶(0[,)+∞)) |
| 231 | | reex 10027 |
. . . . . . . . . . . 12
⊢ ℝ
∈ V |
| 232 | 231 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ℝ ∈ V) |
| 233 | | inidm 3822 |
. . . . . . . . . . 11
⊢ (ℝ
∩ ℝ) = ℝ |
| 234 | 216, 223,
230, 232, 232, 233 | off 6912 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((𝑡 ∈ ℝ
↦ (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∘𝑓 + (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))):ℝ⟶(0[,]+∞)) |
| 235 | 193, 204 | abstrid 14195 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ≤
((abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) + (abs‘(i ·
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) |
| 236 | 235 | ralrimiva 2966 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ∀𝑡 ∈
ℝ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ≤
((abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) + (abs‘(i ·
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) |
| 237 | | ovexd 6680 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ ((abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) + (abs‘(i ·
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ V) |
| 238 | | eqidd 2623 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) = (𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) |
| 239 | | fvexd 6203 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) ∈ V) |
| 240 | | fvexd 6203 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (abs‘(i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) ∈ V) |
| 241 | | eqidd 2623 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) = (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) |
| 242 | | absmul 14034 |
. . . . . . . . . . . . . . . . 17
⊢ ((i
∈ ℂ ∧ ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)) ∈ ℂ) → (abs‘(i
· ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = ((abs‘i) ·
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) |
| 243 | 13, 201, 242 | sylancr 695 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
(abs‘(i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = ((abs‘i) ·
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) |
| 244 | | absi 14026 |
. . . . . . . . . . . . . . . . . 18
⊢
(abs‘i) = 1 |
| 245 | 244 | oveq1i 6660 |
. . . . . . . . . . . . . . . . 17
⊢
((abs‘i) · (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = (1 ·
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) |
| 246 | 224 | recnd 10068 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) ∈ ℂ) |
| 247 | 246 | mulid2d 10058 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (1
· (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) |
| 248 | 245, 247 | syl5eq 2668 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
((abs‘i) · (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) |
| 249 | 243, 248 | eqtr2d 2657 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) = (abs‘(i ·
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) |
| 250 | 249 | mpteq2dva 4744 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘(i
· ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) |
| 251 | 250 | adantrl 752 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘(i
· ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) |
| 252 | 232, 239,
240, 241, 251 | offval2 6914 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((𝑡 ∈ ℝ
↦ (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∘𝑓 + (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) = (𝑡 ∈ ℝ ↦
((abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) + (abs‘(i ·
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) |
| 253 | 232, 206,
237, 238, 252 | ofrfval2 6915 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((𝑡 ∈ ℝ
↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∘𝑟 ≤
((𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∘𝑓 + (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ↔ ∀𝑡 ∈ ℝ
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ≤
((abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) + (abs‘(i ·
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) |
| 254 | 236, 253 | mpbird 247 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∘𝑟 ≤
((𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∘𝑓 + (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) |
| 255 | | itg2le 23506 |
. . . . . . . . . 10
⊢ (((𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))):ℝ⟶(0[,]+∞) ∧
((𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∘𝑓 + (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))):ℝ⟶(0[,]+∞) ∧
(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∘𝑟 ≤
((𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∘𝑓 + (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) → (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ≤ (∫2‘((𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∘𝑓 + (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) |
| 256 | 212, 234,
254, 255 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ≤ (∫2‘((𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∘𝑓 + (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) |
| 257 | | absf 14077 |
. . . . . . . . . . . . . 14
⊢
abs:ℂ⟶ℝ |
| 258 | 257 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
abs:ℂ⟶ℝ) |
| 259 | 258, 192 | cofmpt 6399 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (abs
∘ (𝑡 ∈ ℝ
↦ ((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) = (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) |
| 260 | | resubcl 10345 |
. . . . . . . . . . . . . . . 16
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ (𝑓‘𝑡) ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ ℝ) |
| 261 | 185, 188,
260 | syl2an 494 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ ℝ) |
| 262 | 261 | anassrs 680 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ ℝ) |
| 263 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) = (𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) |
| 264 | 262, 263 | fmptd 6385 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))):ℝ⟶ℝ) |
| 265 | 135 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → ℝ
∈ dom vol) |
| 266 | | iunin2 4584 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ ∪ 𝑦 ∈ ran 𝑓(◡𝑓 “ {𝑦})) |
| 267 | | imaiun 6503 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (◡𝑓 “ ∪
𝑦 ∈ ran 𝑓{𝑦}) = ∪
𝑦 ∈ ran 𝑓(◡𝑓 “ {𝑦}) |
| 268 | | iunid 4575 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ∪ 𝑦 ∈ ran 𝑓{𝑦} = ran 𝑓 |
| 269 | 268 | imaeq2i 5464 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (◡𝑓 “ ∪
𝑦 ∈ ran 𝑓{𝑦}) = (◡𝑓 “ ran 𝑓) |
| 270 | 267, 269 | eqtr3i 2646 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ∪ 𝑦 ∈ ran 𝑓(◡𝑓 “ {𝑦}) = (◡𝑓 “ ran 𝑓) |
| 271 | 270 | ineq2i 3811 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ ∪ 𝑦 ∈ ran 𝑓(◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ ran 𝑓)) |
| 272 | 266, 271 | eqtri 2644 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ ran 𝑓)) |
| 273 | | cnvimass 5485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ⊆ dom (𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) |
| 274 | | ovex 6678 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ V |
| 275 | 274, 263 | dmmpti 6023 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ dom
(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) = ℝ |
| 276 | 273, 275 | sseqtri 3637 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ⊆
ℝ |
| 277 | | cnvimarndm 5486 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (◡𝑓 “ ran 𝑓) = dom 𝑓 |
| 278 | | fdm 6051 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓:ℝ⟶ℝ →
dom 𝑓 =
ℝ) |
| 279 | 187, 278 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 ∈ dom ∫1
→ dom 𝑓 =
ℝ) |
| 280 | 277, 279 | syl5eq 2668 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ dom ∫1
→ (◡𝑓 “ ran 𝑓) = ℝ) |
| 281 | 276, 280 | syl5sseqr 3654 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ⊆ (◡𝑓 “ ran 𝑓)) |
| 282 | | df-ss 3588 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ⊆ (◡𝑓 “ ran 𝑓) ↔ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ ran 𝑓)) = (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞))) |
| 283 | 281, 282 | sylib 208 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ ran 𝑓)) = (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞))) |
| 284 | 272, 283 | syl5eq 2668 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ dom ∫1
→ ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞))) |
| 285 | 284 | ad2antlr 763 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞))) |
| 286 | | frn 6053 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓:ℝ⟶ℝ →
ran 𝑓 ⊆
ℝ) |
| 287 | 187, 286 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 ∈ dom ∫1
→ ran 𝑓 ⊆
ℝ) |
| 288 | 287 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ran
𝑓 ⊆
ℝ) |
| 289 | 288 | sselda 3603 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → 𝑦 ∈ ℝ) |
| 290 | 185 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ℝ) |
| 291 | | resubcl 10345 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ 𝑦 ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ) |
| 292 | 185, 291 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ) |
| 293 | 292 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ) |
| 294 | 290, 293 | 2thd 255 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ↔
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ)) |
| 295 | | ltaddsub 10502 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ℝ) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦))) |
| 296 | 185, 295 | syl3an3 1361 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝜑) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦))) |
| 297 | 296 | 3comr 1273 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦))) |
| 298 | 297 | 3expa 1265 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦))) |
| 299 | 294, 298 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ (𝑥 + 𝑦) < (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) ↔ (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ ∧ 𝑥 < ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦)))) |
| 300 | | readdcl 10019 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) |
| 301 | 300 | rexrd 10089 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈
ℝ*) |
| 302 | 301 | adantll 750 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈
ℝ*) |
| 303 | | elioopnf 12267 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑥 + 𝑦) ∈ ℝ* →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ (𝑥 + 𝑦) < (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) |
| 304 | 302, 303 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ (𝑥 + 𝑦) < (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) |
| 305 | | rexr 10085 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℝ*) |
| 306 | 305 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℝ*) |
| 307 | | elioopnf 12267 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ ℝ*
→ (((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ ∧ 𝑥 < ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦)))) |
| 308 | 306, 307 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ ∧ 𝑥 < ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦)))) |
| 309 | 299, 304,
308 | 3bitr4rd 301 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞))) |
| 310 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓‘𝑡) = 𝑦 → ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) = ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦)) |
| 311 | 310 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓‘𝑡) = 𝑦 → (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞))) |
| 312 | 311 | bibi1d 333 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓‘𝑡) = 𝑦 → ((((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)) ↔
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)))) |
| 313 | 309, 312 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑓‘𝑡) = 𝑦 → (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)))) |
| 314 | 313 | pm5.32rd 672 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓‘𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓‘𝑡) = 𝑦))) |
| 315 | 314 | adantllr 755 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓‘𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓‘𝑡) = 𝑦))) |
| 316 | 289, 315 | syldan 487 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓‘𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓‘𝑡) = 𝑦))) |
| 317 | 316 | rabbidv 3189 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)} = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)}) |
| 318 | 187 | feqmptd 6249 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 ∈ dom ∫1
→ 𝑓 = (𝑡 ∈ ℝ ↦ (𝑓‘𝑡))) |
| 319 | 318 | cnveqd 5298 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 ∈ dom ∫1
→ ◡𝑓 = ◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡))) |
| 320 | 319 | imaeq1d 5465 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 ∈ dom ∫1
→ (◡𝑓 “ {𝑦}) = (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦})) |
| 321 | 320 | ineq2d 3814 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦}))) |
| 322 | 263 | mptpreima 5628 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞)} |
| 323 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑦 ∈ V |
| 324 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) = (𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) |
| 325 | 324 | mptiniseg 5629 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ V → (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦}) = {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦}) |
| 326 | 323, 325 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦}) = {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦} |
| 327 | 322, 326 | ineq12i 3812 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦}) |
| 328 | | inrab 3899 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)} |
| 329 | 327, 328 | eqtri 2644 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)} |
| 330 | 321, 329 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)}) |
| 331 | 330 | ad3antlr 767 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)}) |
| 332 | 320 | ineq2d 3814 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦}))) |
| 333 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) = (𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) |
| 334 | 333 | mptpreima 5628 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) = {𝑡 ∈ ℝ ∣
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)} |
| 335 | 334, 326 | ineq12i 3812 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦}) |
| 336 | | inrab 3899 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑡 ∈ ℝ ∣
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)} |
| 337 | 335, 336 | eqtri 2644 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)} |
| 338 | 332, 337 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)}) |
| 339 | 338 | ad3antlr 767 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)}) |
| 340 | 317, 331,
339 | 3eqtr4d 2666 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦}))) |
| 341 | 340 | iuneq2dv 4542 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = ∪
𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦}))) |
| 342 | 285, 341 | eqtr3d 2658 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) = ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦}))) |
| 343 | | i1frn 23444 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 ∈ dom ∫1
→ ran 𝑓 ∈
Fin) |
| 344 | 343 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → ran
𝑓 ∈
Fin) |
| 345 | 94 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) ∈ ℂ) |
| 346 | | eldifn 3733 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑡 ∈ (ℝ ∖ 𝐷) → ¬ 𝑡 ∈ 𝐷) |
| 347 | 346 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑡 ∈ (ℝ ∖ 𝐷)) → ¬ 𝑡 ∈ 𝐷) |
| 348 | 347 | iffalsed 4097 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑡 ∈ (ℝ ∖ 𝐷)) → if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) = 0) |
| 349 | 9 | feqmptd 6249 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡))) |
| 350 | | iftrue 4092 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) = (𝐹‘𝑡)) |
| 351 | 350 | mpteq2ia 4740 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑡 ∈ 𝐷 ↦ if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) = (𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡)) |
| 352 | 349, 351 | syl6eqr 2674 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐹 = (𝑡 ∈ 𝐷 ↦ if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
| 353 | | iblmbf 23534 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐹 ∈ 𝐿1
→ 𝐹 ∈
MblFn) |
| 354 | 8, 353 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐹 ∈ MblFn) |
| 355 | 352, 354 | eqeltrrd 2702 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑡 ∈ 𝐷 ↦ if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ MblFn) |
| 356 | 7, 136, 345, 348, 355 | mbfss 23413 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ MblFn) |
| 357 | 94 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) ∈ ℂ) |
| 358 | 357 | ismbfcn2 23406 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ MblFn ↔ ((𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦
(ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ MblFn))) |
| 359 | 356, 358 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦
(ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ MblFn)) |
| 360 | 359 | simpld 475 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ MblFn) |
| 361 | 185 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) →
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ℝ) |
| 362 | 361, 333 | fmptd 6385 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡),
0))):ℝ⟶ℝ) |
| 363 | | mbfima 23399 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))):ℝ⟶ℝ) → (◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∈ dom
vol) |
| 364 | 360, 362,
363 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∈ dom
vol) |
| 365 | | i1fima 23445 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ (◡𝑓 “ {𝑦}) ∈ dom vol) |
| 366 | | inmbl 23310 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∈ dom vol ∧ (◡𝑓 “ {𝑦}) ∈ dom vol) → ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
| 367 | 364, 365,
366 | syl2an 494 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
| 368 | 367 | ralrimivw 2967 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
∀𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
| 369 | | finiunmbl 23312 |
. . . . . . . . . . . . . . . . 17
⊢ ((ran
𝑓 ∈ Fin ∧
∀𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) → ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
| 370 | 344, 368,
369 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
| 371 | 370 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
| 372 | 342, 371 | eqeltrd 2701 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∈ dom
vol) |
| 373 | | iunin2 4584 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ ∪
𝑦 ∈ ran 𝑓(◡𝑓 “ {𝑦})) |
| 374 | 270 | ineq2i 3811 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ ∪
𝑦 ∈ ran 𝑓(◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ ran 𝑓)) |
| 375 | 373, 374 | eqtri 2644 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ ran 𝑓)) |
| 376 | | cnvimass 5485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ⊆ dom (𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) |
| 377 | 376, 275 | sseqtri 3637 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ⊆ ℝ |
| 378 | 377, 280 | syl5sseqr 3654 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ⊆ (◡𝑓 “ ran 𝑓)) |
| 379 | | df-ss 3588 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ⊆ (◡𝑓 “ ran 𝑓) ↔ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ ran 𝑓)) = (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥))) |
| 380 | 378, 379 | sylib 208 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ ran 𝑓)) = (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥))) |
| 381 | 375, 380 | syl5eq 2668 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ dom ∫1
→ ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ {𝑦})) = (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥))) |
| 382 | 381 | ad2antlr 763 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ {𝑦})) = (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥))) |
| 383 | 293, 290 | 2thd 255 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ ↔
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ℝ)) |
| 384 | | ltsubadd 10498 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) < (𝑥 + 𝑦))) |
| 385 | 185, 384 | syl3an1 1359 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) < (𝑥 + 𝑦))) |
| 386 | 385 | 3expa 1265 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) < (𝑥 + 𝑦))) |
| 387 | 386 | an32s 846 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) < (𝑥 + 𝑦))) |
| 388 | 383, 387 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ ∧
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) < 𝑥) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) < (𝑥 + 𝑦)))) |
| 389 | | elioomnf 12268 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ ℝ*
→ (((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ ∧
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) < 𝑥))) |
| 390 | 306, 389 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ ∧
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) < 𝑥))) |
| 391 | | elioomnf 12268 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑥 + 𝑦) ∈ ℝ* →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) < (𝑥 + 𝑦)))) |
| 392 | 302, 391 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) < (𝑥 + 𝑦)))) |
| 393 | 388, 390,
392 | 3bitr4d 300 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)))) |
| 394 | 310 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓‘𝑡) = 𝑦 → (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥))) |
| 395 | 394 | bibi1d 333 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓‘𝑡) = 𝑦 → ((((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))) ↔ (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))))) |
| 396 | 393, 395 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑓‘𝑡) = 𝑦 → (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))))) |
| 397 | 396 | pm5.32rd 672 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓‘𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓‘𝑡) = 𝑦))) |
| 398 | 397 | adantllr 755 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓‘𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓‘𝑡) = 𝑦))) |
| 399 | 289, 398 | syldan 487 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓‘𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓‘𝑡) = 𝑦))) |
| 400 | 399 | rabbidv 3189 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓‘𝑡) = 𝑦)} = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓‘𝑡) = 𝑦)}) |
| 401 | 320 | ineq2d 3814 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦}))) |
| 402 | 263 | mptpreima 5628 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥)} |
| 403 | 402, 326 | ineq12i 3812 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥)} ∩ {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦}) |
| 404 | | inrab 3899 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥)} ∩ {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓‘𝑡) = 𝑦)} |
| 405 | 403, 404 | eqtri 2644 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓‘𝑡) = 𝑦)} |
| 406 | 401, 405 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓‘𝑡) = 𝑦)}) |
| 407 | 406 | ad3antlr 767 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓‘𝑡) = 𝑦)}) |
| 408 | 320 | ineq2d 3814 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦}))) |
| 409 | 333 | mptpreima 5628 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) = {𝑡 ∈ ℝ ∣
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))} |
| 410 | 409, 326 | ineq12i 3812 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))} ∩ {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦}) |
| 411 | | inrab 3899 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑡 ∈ ℝ ∣
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))} ∩ {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓‘𝑡) = 𝑦)} |
| 412 | 410, 411 | eqtri 2644 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓‘𝑡) = 𝑦)} |
| 413 | 408, 412 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓‘𝑡) = 𝑦)}) |
| 414 | 413 | ad3antlr 767 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓‘𝑡) = 𝑦)}) |
| 415 | 400, 407,
414 | 3eqtr4d 2666 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦}))) |
| 416 | 415 | iuneq2dv 4542 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ {𝑦})) = ∪
𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦}))) |
| 417 | 382, 416 | eqtr3d 2658 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) = ∪
𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦}))) |
| 418 | | mbfima 23399 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))):ℝ⟶ℝ) → (◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∈ dom vol) |
| 419 | 360, 362,
418 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∈ dom vol) |
| 420 | | inmbl 23310 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∈ dom vol ∧ (◡𝑓 “ {𝑦}) ∈ dom vol) → ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
| 421 | 419, 365,
420 | syl2an 494 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
| 422 | 421 | ralrimivw 2967 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
∀𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
| 423 | | finiunmbl 23312 |
. . . . . . . . . . . . . . . . 17
⊢ ((ran
𝑓 ∈ Fin ∧
∀𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) → ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
| 424 | 344, 422,
423 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
| 425 | 424 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
| 426 | 417, 425 | eqeltrd 2701 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∈ dom vol) |
| 427 | 264, 265,
372, 426 | ismbf2d 23408 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) ∈ MblFn) |
| 428 | | ftc1anclem1 33485 |
. . . . . . . . . . . . 13
⊢ (((𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))):ℝ⟶ℝ ∧ (𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) ∈ MblFn) → (abs ∘ (𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∈ MblFn) |
| 429 | 264, 427,
428 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (abs
∘ (𝑡 ∈ ℝ
↦ ((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∈ MblFn) |
| 430 | 259, 429 | eqeltrrd 2702 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∈ MblFn) |
| 431 | 430 | adantrr 753 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∈ MblFn) |
| 432 | 160 | adantrr 753 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) ∈ ℝ) |
| 433 | 178 | adantrl 752 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ ℝ) |
| 434 | 431, 223,
432, 230, 433 | itg2addnc 33464 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘((𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∘𝑓 + (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) = ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) |
| 435 | 256, 434 | breqtrd 4679 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) |
| 436 | 435 | adantlr 751 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) |
| 437 | | itg2cl 23499 |
. . . . . . . . . 10
⊢ ((𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))):ℝ⟶(0[,]+∞) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ∈
ℝ*) |
| 438 | 212, 437 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ∈
ℝ*) |
| 439 | 438 | adantlr 751 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ∈
ℝ*) |
| 440 | | readdcl 10019 |
. . . . . . . . . . . 12
⊢
(((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) ∈ ℝ ∧
(∫2‘(𝑡
∈ ℝ ↦ (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ ℝ) →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∈ ℝ) |
| 441 | 160, 178,
440 | syl2an 494 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ (𝜑 ∧ 𝑔 ∈ dom ∫1)) →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∈ ℝ) |
| 442 | 441 | anandis 873 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∈ ℝ) |
| 443 | 442 | rexrd 10089 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∈
ℝ*) |
| 444 | 443 | adantlr 751 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∈
ℝ*) |
| 445 | 1, 1 | rpaddcld 11887 |
. . . . . . . . . 10
⊢ (𝑌 ∈ ℝ+
→ ((𝑌 / 2) + (𝑌 / 2)) ∈
ℝ+) |
| 446 | 445 | rpxrd 11873 |
. . . . . . . . 9
⊢ (𝑌 ∈ ℝ+
→ ((𝑌 / 2) + (𝑌 / 2)) ∈
ℝ*) |
| 447 | 446 | ad2antlr 763 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → ((𝑌 / 2) + (𝑌 / 2)) ∈
ℝ*) |
| 448 | | xrlelttr 11987 |
. . . . . . . 8
⊢
(((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ∈ ℝ* ∧
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∈ ℝ* ∧
((𝑌 / 2) + (𝑌 / 2)) ∈
ℝ*) → (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∧ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2))) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2)))) |
| 449 | 439, 444,
447, 448 | syl3anc 1326 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∧ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2))) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2)))) |
| 450 | 436, 449 | mpand 711 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2)) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2)))) |
| 451 | 184, 450 | syld 47 |
. . . . 5
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2)))) |
| 452 | | mulcl 10020 |
. . . . . . . . . . . . . . 15
⊢ ((i
∈ ℂ ∧ (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ) → (i ·
(ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ ℂ) |
| 453 | 13, 195, 452 | sylancr 695 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (i ·
(ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ ℂ) |
| 454 | 186, 453 | jca 554 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ ∧ (i ·
(ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ ℂ)) |
| 455 | | mulcl 10020 |
. . . . . . . . . . . . . . . 16
⊢ ((i
∈ ℂ ∧ (𝑔‘𝑡) ∈ ℂ) → (i · (𝑔‘𝑡)) ∈ ℂ) |
| 456 | 13, 198, 455 | sylancr 695 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (i · (𝑔‘𝑡)) ∈ ℂ) |
| 457 | 189, 456 | anim12i 590 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
∧ (𝑔 ∈ dom
∫1 ∧ 𝑡
∈ ℝ)) → ((𝑓‘𝑡) ∈ ℂ ∧ (i · (𝑔‘𝑡)) ∈ ℂ)) |
| 458 | 457 | anandirs 874 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((𝑓‘𝑡) ∈ ℂ ∧ (i · (𝑔‘𝑡)) ∈ ℂ)) |
| 459 | | addsub4 10324 |
. . . . . . . . . . . . 13
⊢
((((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ ∧ (i ·
(ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ ℂ) ∧ ((𝑓‘𝑡) ∈ ℂ ∧ (i · (𝑔‘𝑡)) ∈ ℂ)) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) + (i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) = (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + ((i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − (i · (𝑔‘𝑡))))) |
| 460 | 454, 458,
459 | syl2an 494 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1)
∧ 𝑡 ∈ ℝ))
→ (((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) + (i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) = (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + ((i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − (i · (𝑔‘𝑡))))) |
| 461 | 460 | anassrs 680 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) + (i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) = (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + ((i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − (i · (𝑔‘𝑡))))) |
| 462 | 94 | replimd 13937 |
. . . . . . . . . . . . 13
⊢ (𝜑 → if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) = ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) + (i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) |
| 463 | 462 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) = ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) + (i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) |
| 464 | 463 | oveq1d 6665 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) = (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) + (i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
| 465 | 198 | adantll 750 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (𝑔‘𝑡) ∈ ℂ) |
| 466 | | subdi 10463 |
. . . . . . . . . . . . . 14
⊢ ((i
∈ ℂ ∧ (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ ∧ (𝑔‘𝑡) ∈ ℂ) → (i ·
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) = ((i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − (i · (𝑔‘𝑡)))) |
| 467 | 13, 195, 465, 466 | mp3an3an 1430 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1)
∧ 𝑡 ∈ ℝ))
→ (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) = ((i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − (i · (𝑔‘𝑡)))) |
| 468 | 467 | anassrs 680 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) = ((i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − (i · (𝑔‘𝑡)))) |
| 469 | 468 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + ((i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − (i · (𝑔‘𝑡))))) |
| 470 | 461, 464,
469 | 3eqtr4rd 2667 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = (if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
| 471 | 470 | fveq2d 6195 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) = (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
| 472 | 471 | mpteq2dva 4744 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) = (𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) |
| 473 | 472 | fveq2d 6195 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) = (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))))) |
| 474 | 473 | adantlr 751 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) = (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))))) |
| 475 | | rpcn 11841 |
. . . . . . . 8
⊢ (𝑌 ∈ ℝ+
→ 𝑌 ∈
ℂ) |
| 476 | 475 | 2halvesd 11278 |
. . . . . . 7
⊢ (𝑌 ∈ ℝ+
→ ((𝑌 / 2) + (𝑌 / 2)) = 𝑌) |
| 477 | 476 | ad2antlr 763 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → ((𝑌 / 2) + (𝑌 / 2)) = 𝑌) |
| 478 | 474, 477 | breq12d 4666 |
. . . . 5
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2)) ↔
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < 𝑌)) |
| 479 | 451, 478 | sylibd 229 |
. . . 4
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < 𝑌)) |
| 480 | 479 | reximdvva 3019 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
(∃𝑓 ∈ dom
∫1∃𝑔
∈ dom ∫1((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) → ∃𝑓 ∈ dom ∫1∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < 𝑌)) |
| 481 | 123, 480 | syl5bir 233 |
. 2
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
((∃𝑓 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2) ∧ ∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) → ∃𝑓 ∈ dom ∫1∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < 𝑌)) |
| 482 | 11, 122, 481 | mp2and 715 |
1
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
∃𝑓 ∈ dom
∫1∃𝑔
∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < 𝑌) |