Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtridf1o Structured version   Visualization version   Unicode version

Theorem pmtridf1o 29856
Description: Transpositions of  X and  Y (understood to be the identity when  X  =  Y), are bijections. (Contributed by Thierry Arnoux, 1-Jan-2022.)
Hypotheses
Ref Expression
pmtridf1o.a  |-  ( ph  ->  A  e.  V )
pmtridf1o.x  |-  ( ph  ->  X  e.  A )
pmtridf1o.y  |-  ( ph  ->  Y  e.  A )
pmtridf1o.t  |-  T  =  if ( X  =  Y ,  (  _I  |`  A ) ,  ( (pmTrsp `  A ) `  { X ,  Y } ) )
Assertion
Ref Expression
pmtridf1o  |-  ( ph  ->  T : A -1-1-onto-> A )

Proof of Theorem pmtridf1o
StepHypRef Expression
1 pmtridf1o.t . . . 4  |-  T  =  if ( X  =  Y ,  (  _I  |`  A ) ,  ( (pmTrsp `  A ) `  { X ,  Y } ) )
2 iftrue 4092 . . . . 5  |-  ( X  =  Y  ->  if ( X  =  Y ,  (  _I  |`  A ) ,  ( (pmTrsp `  A ) `  { X ,  Y }
) )  =  (  _I  |`  A )
)
32adantl 482 . . . 4  |-  ( (
ph  /\  X  =  Y )  ->  if ( X  =  Y ,  (  _I  |`  A ) ,  ( (pmTrsp `  A ) `  { X ,  Y }
) )  =  (  _I  |`  A )
)
41, 3syl5eq 2668 . . 3  |-  ( (
ph  /\  X  =  Y )  ->  T  =  (  _I  |`  A ) )
5 f1oi 6174 . . . 4  |-  (  _I  |`  A ) : A -1-1-onto-> A
65a1i 11 . . 3  |-  ( (
ph  /\  X  =  Y )  ->  (  _I  |`  A ) : A -1-1-onto-> A )
7 f1oeq1 6127 . . . 4  |-  ( T  =  (  _I  |`  A )  ->  ( T : A
-1-1-onto-> A 
<->  (  _I  |`  A ) : A -1-1-onto-> A ) )
87biimpar 502 . . 3  |-  ( ( T  =  (  _I  |`  A )  /\  (  _I  |`  A ) : A -1-1-onto-> A )  ->  T : A -1-1-onto-> A )
94, 6, 8syl2anc 693 . 2  |-  ( (
ph  /\  X  =  Y )  ->  T : A -1-1-onto-> A )
10 simpr 477 . . . . . . 7  |-  ( (
ph  /\  X  =/=  Y )  ->  X  =/=  Y )
1110neneqd 2799 . . . . . 6  |-  ( (
ph  /\  X  =/=  Y )  ->  -.  X  =  Y )
12 iffalse 4095 . . . . . 6  |-  ( -.  X  =  Y  ->  if ( X  =  Y ,  (  _I  |`  A ) ,  ( (pmTrsp `  A ) `  { X ,  Y }
) )  =  ( (pmTrsp `  A ) `  { X ,  Y } ) )
1311, 12syl 17 . . . . 5  |-  ( (
ph  /\  X  =/=  Y )  ->  if ( X  =  Y , 
(  _I  |`  A ) ,  ( (pmTrsp `  A ) `  { X ,  Y }
) )  =  ( (pmTrsp `  A ) `  { X ,  Y } ) )
141, 13syl5eq 2668 . . . 4  |-  ( (
ph  /\  X  =/=  Y )  ->  T  =  ( (pmTrsp `  A ) `  { X ,  Y } ) )
15 pmtridf1o.a . . . . . 6  |-  ( ph  ->  A  e.  V )
1615adantr 481 . . . . 5  |-  ( (
ph  /\  X  =/=  Y )  ->  A  e.  V )
17 pmtridf1o.x . . . . . . 7  |-  ( ph  ->  X  e.  A )
1817adantr 481 . . . . . 6  |-  ( (
ph  /\  X  =/=  Y )  ->  X  e.  A )
19 pmtridf1o.y . . . . . . 7  |-  ( ph  ->  Y  e.  A )
2019adantr 481 . . . . . 6  |-  ( (
ph  /\  X  =/=  Y )  ->  Y  e.  A )
2118, 20prssd 4354 . . . . 5  |-  ( (
ph  /\  X  =/=  Y )  ->  { X ,  Y }  C_  A
)
22 pr2nelem 8827 . . . . . 6  |-  ( ( X  e.  A  /\  Y  e.  A  /\  X  =/=  Y )  ->  { X ,  Y }  ~~  2o )
2318, 20, 10, 22syl3anc 1326 . . . . 5  |-  ( (
ph  /\  X  =/=  Y )  ->  { X ,  Y }  ~~  2o )
24 eqid 2622 . . . . . 6  |-  (pmTrsp `  A )  =  (pmTrsp `  A )
25 eqid 2622 . . . . . 6  |-  ran  (pmTrsp `  A )  =  ran  (pmTrsp `  A )
2624, 25pmtrrn 17877 . . . . 5  |-  ( ( A  e.  V  /\  { X ,  Y }  C_  A  /\  { X ,  Y }  ~~  2o )  ->  ( (pmTrsp `  A ) `  { X ,  Y }
)  e.  ran  (pmTrsp `  A ) )
2716, 21, 23, 26syl3anc 1326 . . . 4  |-  ( (
ph  /\  X  =/=  Y )  ->  ( (pmTrsp `  A ) `  { X ,  Y }
)  e.  ran  (pmTrsp `  A ) )
2814, 27eqeltrd 2701 . . 3  |-  ( (
ph  /\  X  =/=  Y )  ->  T  e.  ran  (pmTrsp `  A )
)
2924, 25pmtrff1o 17883 . . 3  |-  ( T  e.  ran  (pmTrsp `  A )  ->  T : A -1-1-onto-> A )
3028, 29syl 17 . 2  |-  ( (
ph  /\  X  =/=  Y )  ->  T : A
-1-1-onto-> A )
319, 30pm2.61dane 2881 1  |-  ( ph  ->  T : A -1-1-onto-> A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   ifcif 4086   {cpr 4179   class class class wbr 4653    _I cid 5023   ran crn 5115    |` cres 5116   -1-1-onto->wf1o 5887   ` cfv 5888   2oc2o 7554    ~~ cen 7952  pmTrspcpmtr 17861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pmtr 17862
This theorem is referenced by:  reprpmtf1o  30704  hgt750lema  30735
  Copyright terms: Public domain W3C validator