MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcshwlkn0lem6 Structured version   Visualization version   GIF version

Theorem crctcshwlkn0lem6 26707
Description: Lemma for crctcshwlkn0 26713. (Contributed by AV, 12-Mar-2021.)
Hypotheses
Ref Expression
crctcshwlkn0lem.s (𝜑𝑆 ∈ (1..^𝑁))
crctcshwlkn0lem.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
crctcshwlkn0lem.h 𝐻 = (𝐹 cyclShift 𝑆)
crctcshwlkn0lem.n 𝑁 = (#‘𝐹)
crctcshwlkn0lem.f (𝜑𝐹 ∈ Word 𝐴)
crctcshwlkn0lem.p (𝜑 → ∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))
crctcshwlkn0lem.e (𝜑 → (𝑃𝑁) = (𝑃‘0))
Assertion
Ref Expression
crctcshwlkn0lem6 ((𝜑𝐽 = (𝑁𝑆)) → if-((𝑄𝐽) = (𝑄‘(𝐽 + 1)), (𝐼‘(𝐻𝐽)) = {(𝑄𝐽)}, {(𝑄𝐽), (𝑄‘(𝐽 + 1))} ⊆ (𝐼‘(𝐻𝐽))))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥   𝑖,𝐹   𝑖,𝐼   𝑖,𝑁   𝑃,𝑖   𝑆,𝑖   𝜑,𝑖
Allowed substitution hints:   𝐴(𝑥,𝑖)   𝑄(𝑥,𝑖)   𝐹(𝑥)   𝐻(𝑥,𝑖)   𝐼(𝑥)   𝐽(𝑖)

Proof of Theorem crctcshwlkn0lem6
StepHypRef Expression
1 oveq1 6657 . . . . . . . . 9 (𝑖 = 0 → (𝑖 + 1) = (0 + 1))
2 0p1e1 11132 . . . . . . . . 9 (0 + 1) = 1
31, 2syl6eq 2672 . . . . . . . 8 (𝑖 = 0 → (𝑖 + 1) = 1)
4 wkslem2 26504 . . . . . . . 8 ((𝑖 = 0 ∧ (𝑖 + 1) = 1) → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
53, 4mpdan 702 . . . . . . 7 (𝑖 = 0 → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
6 crctcshwlkn0lem.p . . . . . . 7 (𝜑 → ∀𝑖 ∈ (0..^𝑁)if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))
7 crctcshwlkn0lem.s . . . . . . . . 9 (𝜑𝑆 ∈ (1..^𝑁))
8 elfzo1 12517 . . . . . . . . . 10 (𝑆 ∈ (1..^𝑁) ↔ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁))
9 simp2 1062 . . . . . . . . . 10 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 𝑁 ∈ ℕ)
108, 9sylbi 207 . . . . . . . . 9 (𝑆 ∈ (1..^𝑁) → 𝑁 ∈ ℕ)
117, 10syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
12 lbfzo0 12507 . . . . . . . 8 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
1311, 12sylibr 224 . . . . . . 7 (𝜑 → 0 ∈ (0..^𝑁))
145, 6, 13rspcdva 3316 . . . . . 6 (𝜑 → if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))))
15 crctcshwlkn0lem.e . . . . . . 7 (𝜑 → (𝑃𝑁) = (𝑃‘0))
16 eqeq1 2626 . . . . . . . 8 ((𝑃𝑁) = (𝑃‘0) → ((𝑃𝑁) = (𝑃‘1) ↔ (𝑃‘0) = (𝑃‘1)))
17 sneq 4187 . . . . . . . . 9 ((𝑃𝑁) = (𝑃‘0) → {(𝑃𝑁)} = {(𝑃‘0)})
1817eqeq2d 2632 . . . . . . . 8 ((𝑃𝑁) = (𝑃‘0) → ((𝐼‘(𝐹‘0)) = {(𝑃𝑁)} ↔ (𝐼‘(𝐹‘0)) = {(𝑃‘0)}))
19 preq1 4268 . . . . . . . . 9 ((𝑃𝑁) = (𝑃‘0) → {(𝑃𝑁), (𝑃‘1)} = {(𝑃‘0), (𝑃‘1)})
2019sseq1d 3632 . . . . . . . 8 ((𝑃𝑁) = (𝑃‘0) → ({(𝑃𝑁), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ↔ {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))))
2116, 18, 20ifpbi123d 1027 . . . . . . 7 ((𝑃𝑁) = (𝑃‘0) → (if-((𝑃𝑁) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
2215, 21syl 17 . . . . . 6 (𝜑 → (if-((𝑃𝑁) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))) ↔ if-((𝑃‘0) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
2314, 22mpbird 247 . . . . 5 (𝜑 → if-((𝑃𝑁) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))))
24 nncn 11028 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
25 nncn 11028 . . . . . . . . . 10 (𝑆 ∈ ℕ → 𝑆 ∈ ℂ)
26 npcan 10290 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 𝑆 ∈ ℂ) → ((𝑁𝑆) + 𝑆) = 𝑁)
2724, 25, 26syl2anr 495 . . . . . . . . 9 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁𝑆) + 𝑆) = 𝑁)
28 simpr 477 . . . . . . . . . 10 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝑁𝑆) + 𝑆) = 𝑁) → ((𝑁𝑆) + 𝑆) = 𝑁)
29 oveq1 6657 . . . . . . . . . . 11 (((𝑁𝑆) + 𝑆) = 𝑁 → (((𝑁𝑆) + 𝑆) mod (#‘𝐹)) = (𝑁 mod (#‘𝐹)))
30 crctcshwlkn0lem.n . . . . . . . . . . . . . . 15 𝑁 = (#‘𝐹)
3130eqcomi 2631 . . . . . . . . . . . . . 14 (#‘𝐹) = 𝑁
3231a1i 11 . . . . . . . . . . . . 13 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (#‘𝐹) = 𝑁)
3332oveq2d 6666 . . . . . . . . . . . 12 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 mod (#‘𝐹)) = (𝑁 mod 𝑁))
34 nnrp 11842 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
35 modid0 12696 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ+ → (𝑁 mod 𝑁) = 0)
3634, 35syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 mod 𝑁) = 0)
3736adantl 482 . . . . . . . . . . . 12 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 mod 𝑁) = 0)
3833, 37eqtrd 2656 . . . . . . . . . . 11 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 mod (#‘𝐹)) = 0)
3929, 38sylan9eqr 2678 . . . . . . . . . 10 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝑁𝑆) + 𝑆) = 𝑁) → (((𝑁𝑆) + 𝑆) mod (#‘𝐹)) = 0)
40 simpl 473 . . . . . . . . . 10 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝑁𝑆) + 𝑆) = 𝑁) → (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ))
4128, 39, 403jca 1242 . . . . . . . . 9 (((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((𝑁𝑆) + 𝑆) = 𝑁) → (((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (#‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)))
4227, 41mpdan 702 . . . . . . . 8 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (#‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)))
43423adant3 1081 . . . . . . 7 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (#‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)))
448, 43sylbi 207 . . . . . 6 (𝑆 ∈ (1..^𝑁) → (((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (#‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)))
45 simp1 1061 . . . . . . . . 9 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (#‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑁𝑆) + 𝑆) = 𝑁)
4645fveq2d 6195 . . . . . . . 8 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (#‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑃‘((𝑁𝑆) + 𝑆)) = (𝑃𝑁))
4746eqeq1d 2624 . . . . . . 7 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (#‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃‘((𝑁𝑆) + 𝑆)) = (𝑃‘1) ↔ (𝑃𝑁) = (𝑃‘1)))
48 simp2 1062 . . . . . . . . . 10 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (#‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (((𝑁𝑆) + 𝑆) mod (#‘𝐹)) = 0)
4948fveq2d 6195 . . . . . . . . 9 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (#‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹))) = (𝐹‘0))
5049fveq2d 6195 . . . . . . . 8 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (#‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹)))) = (𝐼‘(𝐹‘0)))
5146sneqd 4189 . . . . . . . 8 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (#‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → {(𝑃‘((𝑁𝑆) + 𝑆))} = {(𝑃𝑁)})
5250, 51eqeq12d 2637 . . . . . . 7 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (#‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹)))) = {(𝑃‘((𝑁𝑆) + 𝑆))} ↔ (𝐼‘(𝐹‘0)) = {(𝑃𝑁)}))
5346preq1d 4274 . . . . . . . 8 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (#‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → {(𝑃‘((𝑁𝑆) + 𝑆)), (𝑃‘1)} = {(𝑃𝑁), (𝑃‘1)})
5453, 50sseq12d 3634 . . . . . . 7 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (#‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ({(𝑃‘((𝑁𝑆) + 𝑆)), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹)))) ↔ {(𝑃𝑁), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))))
5547, 52, 54ifpbi123d 1027 . . . . . 6 ((((𝑁𝑆) + 𝑆) = 𝑁 ∧ (((𝑁𝑆) + 𝑆) mod (#‘𝐹)) = 0 ∧ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (if-((𝑃‘((𝑁𝑆) + 𝑆)) = (𝑃‘1), (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹)))) = {(𝑃‘((𝑁𝑆) + 𝑆))}, {(𝑃‘((𝑁𝑆) + 𝑆)), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹))))) ↔ if-((𝑃𝑁) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
567, 44, 553syl 18 . . . . 5 (𝜑 → (if-((𝑃‘((𝑁𝑆) + 𝑆)) = (𝑃‘1), (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹)))) = {(𝑃‘((𝑁𝑆) + 𝑆))}, {(𝑃‘((𝑁𝑆) + 𝑆)), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹))))) ↔ if-((𝑃𝑁) = (𝑃‘1), (𝐼‘(𝐹‘0)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)))))
5723, 56mpbird 247 . . . 4 (𝜑 → if-((𝑃‘((𝑁𝑆) + 𝑆)) = (𝑃‘1), (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹)))) = {(𝑃‘((𝑁𝑆) + 𝑆))}, {(𝑃‘((𝑁𝑆) + 𝑆)), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹))))))
58 nnsub 11059 . . . . . . . . . . 11 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑆 < 𝑁 ↔ (𝑁𝑆) ∈ ℕ))
5958biimp3a 1432 . . . . . . . . . 10 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁𝑆) ∈ ℕ)
6059nnnn0d 11351 . . . . . . . . 9 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → (𝑁𝑆) ∈ ℕ0)
618, 60sylbi 207 . . . . . . . 8 (𝑆 ∈ (1..^𝑁) → (𝑁𝑆) ∈ ℕ0)
627, 61syl 17 . . . . . . 7 (𝜑 → (𝑁𝑆) ∈ ℕ0)
63 nn0fz0 12437 . . . . . . 7 ((𝑁𝑆) ∈ ℕ0 ↔ (𝑁𝑆) ∈ (0...(𝑁𝑆)))
6462, 63sylib 208 . . . . . 6 (𝜑 → (𝑁𝑆) ∈ (0...(𝑁𝑆)))
65 crctcshwlkn0lem.q . . . . . . 7 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
667, 65crctcshwlkn0lem2 26703 . . . . . 6 ((𝜑 ∧ (𝑁𝑆) ∈ (0...(𝑁𝑆))) → (𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)))
6764, 66mpdan 702 . . . . 5 (𝜑 → (𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)))
68 elfzoel2 12469 . . . . . . . . . . . . 13 (𝑆 ∈ (1..^𝑁) → 𝑁 ∈ ℤ)
69 elfzoelz 12470 . . . . . . . . . . . . 13 (𝑆 ∈ (1..^𝑁) → 𝑆 ∈ ℤ)
7068, 69zsubcld 11487 . . . . . . . . . . . 12 (𝑆 ∈ (1..^𝑁) → (𝑁𝑆) ∈ ℤ)
7170peano2zd 11485 . . . . . . . . . . 11 (𝑆 ∈ (1..^𝑁) → ((𝑁𝑆) + 1) ∈ ℤ)
72 nnre 11027 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
7372anim1i 592 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℕ) → (𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ))
7473ancoms 469 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ))
75 crctcshwlkn0lem1 26702 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝑆 ∈ ℕ) → ((𝑁𝑆) + 1) ≤ 𝑁)
7674, 75syl 17 . . . . . . . . . . . . 13 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁𝑆) + 1) ≤ 𝑁)
77763adant3 1081 . . . . . . . . . . . 12 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((𝑁𝑆) + 1) ≤ 𝑁)
788, 77sylbi 207 . . . . . . . . . . 11 (𝑆 ∈ (1..^𝑁) → ((𝑁𝑆) + 1) ≤ 𝑁)
7971, 68, 783jca 1242 . . . . . . . . . 10 (𝑆 ∈ (1..^𝑁) → (((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝑁𝑆) + 1) ≤ 𝑁))
807, 79syl 17 . . . . . . . . 9 (𝜑 → (((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝑁𝑆) + 1) ≤ 𝑁))
81 eluz2 11693 . . . . . . . . 9 (𝑁 ∈ (ℤ‘((𝑁𝑆) + 1)) ↔ (((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝑁𝑆) + 1) ≤ 𝑁))
8280, 81sylibr 224 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ‘((𝑁𝑆) + 1)))
83 eluzfz1 12348 . . . . . . . 8 (𝑁 ∈ (ℤ‘((𝑁𝑆) + 1)) → ((𝑁𝑆) + 1) ∈ (((𝑁𝑆) + 1)...𝑁))
8482, 83syl 17 . . . . . . 7 (𝜑 → ((𝑁𝑆) + 1) ∈ (((𝑁𝑆) + 1)...𝑁))
857, 65crctcshwlkn0lem3 26704 . . . . . . 7 ((𝜑 ∧ ((𝑁𝑆) + 1) ∈ (((𝑁𝑆) + 1)...𝑁)) → (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘((((𝑁𝑆) + 1) + 𝑆) − 𝑁)))
8684, 85mpdan 702 . . . . . 6 (𝜑 → (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘((((𝑁𝑆) + 1) + 𝑆) − 𝑁)))
87 subcl 10280 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 𝑆 ∈ ℂ) → (𝑁𝑆) ∈ ℂ)
8887ancoms 469 . . . . . . . . . . . . 13 ((𝑆 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑁𝑆) ∈ ℂ)
89 ax-1cn 9994 . . . . . . . . . . . . 13 1 ∈ ℂ
90 pncan2 10288 . . . . . . . . . . . . . 14 (((𝑁𝑆) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑁𝑆) + 1) − (𝑁𝑆)) = 1)
9190eqcomd 2628 . . . . . . . . . . . . 13 (((𝑁𝑆) ∈ ℂ ∧ 1 ∈ ℂ) → 1 = (((𝑁𝑆) + 1) − (𝑁𝑆)))
9288, 89, 91sylancl 694 . . . . . . . . . . . 12 ((𝑆 ∈ ℂ ∧ 𝑁 ∈ ℂ) → 1 = (((𝑁𝑆) + 1) − (𝑁𝑆)))
93 peano2cn 10208 . . . . . . . . . . . . . 14 ((𝑁𝑆) ∈ ℂ → ((𝑁𝑆) + 1) ∈ ℂ)
9488, 93syl 17 . . . . . . . . . . . . 13 ((𝑆 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑁𝑆) + 1) ∈ ℂ)
95 simpr 477 . . . . . . . . . . . . 13 ((𝑆 ∈ ℂ ∧ 𝑁 ∈ ℂ) → 𝑁 ∈ ℂ)
96 simpl 473 . . . . . . . . . . . . 13 ((𝑆 ∈ ℂ ∧ 𝑁 ∈ ℂ) → 𝑆 ∈ ℂ)
9794, 95, 96subsub3d 10422 . . . . . . . . . . . 12 ((𝑆 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((𝑁𝑆) + 1) − (𝑁𝑆)) = ((((𝑁𝑆) + 1) + 𝑆) − 𝑁))
9892, 97eqtr2d 2657 . . . . . . . . . . 11 ((𝑆 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((((𝑁𝑆) + 1) + 𝑆) − 𝑁) = 1)
9925, 24, 98syl2an 494 . . . . . . . . . 10 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((𝑁𝑆) + 1) + 𝑆) − 𝑁) = 1)
100993adant3 1081 . . . . . . . . 9 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → ((((𝑁𝑆) + 1) + 𝑆) − 𝑁) = 1)
1018, 100sylbi 207 . . . . . . . 8 (𝑆 ∈ (1..^𝑁) → ((((𝑁𝑆) + 1) + 𝑆) − 𝑁) = 1)
1027, 101syl 17 . . . . . . 7 (𝜑 → ((((𝑁𝑆) + 1) + 𝑆) − 𝑁) = 1)
103102fveq2d 6195 . . . . . 6 (𝜑 → (𝑃‘((((𝑁𝑆) + 1) + 𝑆) − 𝑁)) = (𝑃‘1))
10486, 103eqtrd 2656 . . . . 5 (𝜑 → (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1))
105 crctcshwlkn0lem.h . . . . . . 7 𝐻 = (𝐹 cyclShift 𝑆)
106105fveq1i 6192 . . . . . 6 (𝐻‘(𝑁𝑆)) = ((𝐹 cyclShift 𝑆)‘(𝑁𝑆))
107 crctcshwlkn0lem.f . . . . . . . . 9 (𝜑𝐹 ∈ Word 𝐴)
108107adantr 481 . . . . . . . 8 ((𝜑𝑆 ∈ (1..^𝑁)) → 𝐹 ∈ Word 𝐴)
10969adantl 482 . . . . . . . 8 ((𝜑𝑆 ∈ (1..^𝑁)) → 𝑆 ∈ ℤ)
110 elfzofz 12485 . . . . . . . . . . 11 (𝑆 ∈ (1..^𝑁) → 𝑆 ∈ (1...𝑁))
111 ubmelfzo 12532 . . . . . . . . . . 11 (𝑆 ∈ (1...𝑁) → (𝑁𝑆) ∈ (0..^𝑁))
112110, 111syl 17 . . . . . . . . . 10 (𝑆 ∈ (1..^𝑁) → (𝑁𝑆) ∈ (0..^𝑁))
113112adantl 482 . . . . . . . . 9 ((𝜑𝑆 ∈ (1..^𝑁)) → (𝑁𝑆) ∈ (0..^𝑁))
11431oveq2i 6661 . . . . . . . . 9 (0..^(#‘𝐹)) = (0..^𝑁)
115113, 114syl6eleqr 2712 . . . . . . . 8 ((𝜑𝑆 ∈ (1..^𝑁)) → (𝑁𝑆) ∈ (0..^(#‘𝐹)))
116 cshwidxmod 13549 . . . . . . . 8 ((𝐹 ∈ Word 𝐴𝑆 ∈ ℤ ∧ (𝑁𝑆) ∈ (0..^(#‘𝐹))) → ((𝐹 cyclShift 𝑆)‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹))))
117108, 109, 115, 116syl3anc 1326 . . . . . . 7 ((𝜑𝑆 ∈ (1..^𝑁)) → ((𝐹 cyclShift 𝑆)‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹))))
1187, 117mpdan 702 . . . . . 6 (𝜑 → ((𝐹 cyclShift 𝑆)‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹))))
119106, 118syl5eq 2668 . . . . 5 (𝜑 → (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹))))
120 simp1 1061 . . . . . . 7 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹)))) → (𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)))
121 simp2 1062 . . . . . . 7 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹)))) → (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1))
122120, 121eqeq12d 2637 . . . . . 6 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹)))) → ((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)) ↔ (𝑃‘((𝑁𝑆) + 𝑆)) = (𝑃‘1)))
123 simp3 1063 . . . . . . . 8 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹)))) → (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹))))
124123fveq2d 6195 . . . . . . 7 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹)))) → (𝐼‘(𝐻‘(𝑁𝑆))) = (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹)))))
125120sneqd 4189 . . . . . . 7 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹)))) → {(𝑄‘(𝑁𝑆))} = {(𝑃‘((𝑁𝑆) + 𝑆))})
126124, 125eqeq12d 2637 . . . . . 6 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹)))) → ((𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))} ↔ (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹)))) = {(𝑃‘((𝑁𝑆) + 𝑆))}))
127120, 121preq12d 4276 . . . . . . 7 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹)))) → {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} = {(𝑃‘((𝑁𝑆) + 𝑆)), (𝑃‘1)})
128127, 124sseq12d 3634 . . . . . 6 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹)))) → ({(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆))) ↔ {(𝑃‘((𝑁𝑆) + 𝑆)), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹))))))
129122, 126, 128ifpbi123d 1027 . . . . 5 (((𝑄‘(𝑁𝑆)) = (𝑃‘((𝑁𝑆) + 𝑆)) ∧ (𝑄‘((𝑁𝑆) + 1)) = (𝑃‘1) ∧ (𝐻‘(𝑁𝑆)) = (𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹)))) → (if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆)))) ↔ if-((𝑃‘((𝑁𝑆) + 𝑆)) = (𝑃‘1), (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹)))) = {(𝑃‘((𝑁𝑆) + 𝑆))}, {(𝑃‘((𝑁𝑆) + 𝑆)), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹)))))))
13067, 104, 119, 129syl3anc 1326 . . . 4 (𝜑 → (if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆)))) ↔ if-((𝑃‘((𝑁𝑆) + 𝑆)) = (𝑃‘1), (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹)))) = {(𝑃‘((𝑁𝑆) + 𝑆))}, {(𝑃‘((𝑁𝑆) + 𝑆)), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘(((𝑁𝑆) + 𝑆) mod (#‘𝐹)))))))
13157, 130mpbird 247 . . 3 (𝜑 → if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆)))))
132131adantr 481 . 2 ((𝜑𝐽 = (𝑁𝑆)) → if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆)))))
133 wkslem1 26503 . . 3 (𝐽 = (𝑁𝑆) → (if-((𝑄𝐽) = (𝑄‘(𝐽 + 1)), (𝐼‘(𝐻𝐽)) = {(𝑄𝐽)}, {(𝑄𝐽), (𝑄‘(𝐽 + 1))} ⊆ (𝐼‘(𝐻𝐽))) ↔ if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆))))))
134133adantl 482 . 2 ((𝜑𝐽 = (𝑁𝑆)) → (if-((𝑄𝐽) = (𝑄‘(𝐽 + 1)), (𝐼‘(𝐻𝐽)) = {(𝑄𝐽)}, {(𝑄𝐽), (𝑄‘(𝐽 + 1))} ⊆ (𝐼‘(𝐻𝐽))) ↔ if-((𝑄‘(𝑁𝑆)) = (𝑄‘((𝑁𝑆) + 1)), (𝐼‘(𝐻‘(𝑁𝑆))) = {(𝑄‘(𝑁𝑆))}, {(𝑄‘(𝑁𝑆)), (𝑄‘((𝑁𝑆) + 1))} ⊆ (𝐼‘(𝐻‘(𝑁𝑆))))))
135132, 134mpbird 247 1 ((𝜑𝐽 = (𝑁𝑆)) → if-((𝑄𝐽) = (𝑄‘(𝐽 + 1)), (𝐼‘(𝐻𝐽)) = {(𝑄𝐽)}, {(𝑄𝐽), (𝑄‘(𝐽 + 1))} ⊆ (𝐼‘(𝐻𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  if-wif 1012  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wss 3574  ifcif 4086  {csn 4177  {cpr 4179   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cmin 10266  cn 11020  0cn0 11292  cz 11377  cuz 11687  +crp 11832  ...cfz 12326  ..^cfzo 12465   mod cmo 12668  #chash 13117  Word cword 13291   cyclShift ccsh 13534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-csh 13535
This theorem is referenced by:  crctcshwlkn0lem7  26708
  Copyright terms: Public domain W3C validator