| Step | Hyp | Ref
| Expression |
| 1 | | prfval.k |
. 2
⊢ 𝑃 = (𝐹 〈,〉F 𝐺) |
| 2 | | df-prf 16815 |
. . . 4
⊢
〈,〉F = (𝑓 ∈ V, 𝑔 ∈ V ↦ ⦋dom
(1st ‘𝑓) /
𝑏⦌〈(𝑥 ∈ 𝑏 ↦ 〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉))〉) |
| 3 | 2 | a1i 11 |
. . 3
⊢ (𝜑 →
〈,〉F = (𝑓 ∈ V, 𝑔 ∈ V ↦ ⦋dom
(1st ‘𝑓) /
𝑏⦌〈(𝑥 ∈ 𝑏 ↦ 〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉))〉)) |
| 4 | | fvex 6201 |
. . . . . 6
⊢
(1st ‘𝑓) ∈ V |
| 5 | 4 | dmex 7099 |
. . . . 5
⊢ dom
(1st ‘𝑓)
∈ V |
| 6 | 5 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → dom (1st ‘𝑓) ∈ V) |
| 7 | | simprl 794 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → 𝑓 = 𝐹) |
| 8 | 7 | fveq2d 6195 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (1st ‘𝑓) = (1st ‘𝐹)) |
| 9 | 8 | dmeqd 5326 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → dom (1st ‘𝑓) = dom (1st
‘𝐹)) |
| 10 | | prfval.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐶) |
| 11 | | eqid 2622 |
. . . . . . . 8
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 12 | | relfunc 16522 |
. . . . . . . . 9
⊢ Rel
(𝐶 Func 𝐷) |
| 13 | | prfval.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 14 | | 1st2ndbr 7217 |
. . . . . . . . 9
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 15 | 12, 13, 14 | sylancr 695 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 16 | 10, 11, 15 | funcf1 16526 |
. . . . . . 7
⊢ (𝜑 → (1st
‘𝐹):𝐵⟶(Base‘𝐷)) |
| 17 | | fdm 6051 |
. . . . . . 7
⊢
((1st ‘𝐹):𝐵⟶(Base‘𝐷) → dom (1st ‘𝐹) = 𝐵) |
| 18 | 16, 17 | syl 17 |
. . . . . 6
⊢ (𝜑 → dom (1st
‘𝐹) = 𝐵) |
| 19 | 18 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → dom (1st ‘𝐹) = 𝐵) |
| 20 | 9, 19 | eqtrd 2656 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → dom (1st ‘𝑓) = 𝐵) |
| 21 | | simpr 477 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵) |
| 22 | | simplrl 800 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → 𝑓 = 𝐹) |
| 23 | 22 | fveq2d 6195 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (1st ‘𝑓) = (1st ‘𝐹)) |
| 24 | 23 | fveq1d 6193 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ((1st ‘𝑓)‘𝑥) = ((1st ‘𝐹)‘𝑥)) |
| 25 | | simplrr 801 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → 𝑔 = 𝐺) |
| 26 | 25 | fveq2d 6195 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (1st ‘𝑔) = (1st ‘𝐺)) |
| 27 | 26 | fveq1d 6193 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ((1st ‘𝑔)‘𝑥) = ((1st ‘𝐺)‘𝑥)) |
| 28 | 24, 27 | opeq12d 4410 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → 〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 = 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉) |
| 29 | 21, 28 | mpteq12dv 4733 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥 ∈ 𝑏 ↦ 〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉) = (𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉)) |
| 30 | | eqidd 2623 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉) = (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉)) |
| 31 | 21, 21, 30 | mpt2eq123dv 6717 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉))) |
| 32 | 22 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑓 = 𝐹) |
| 33 | 32 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (2nd ‘𝑓) = (2nd ‘𝐹)) |
| 34 | 33 | oveqd 6667 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑥(2nd ‘𝑓)𝑦) = (𝑥(2nd ‘𝐹)𝑦)) |
| 35 | 34 | dmeqd 5326 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → dom (𝑥(2nd ‘𝑓)𝑦) = dom (𝑥(2nd ‘𝐹)𝑦)) |
| 36 | | prfval.h |
. . . . . . . . . . . 12
⊢ 𝐻 = (Hom ‘𝐶) |
| 37 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
| 38 | 15 | ad4antr 768 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 39 | | simplr 792 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
| 40 | | simpr 477 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
| 41 | 10, 36, 37, 38, 39, 40 | funcf2 16528 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑥(2nd ‘𝐹)𝑦):(𝑥𝐻𝑦)⟶(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦))) |
| 42 | | fdm 6051 |
. . . . . . . . . . 11
⊢ ((𝑥(2nd ‘𝐹)𝑦):(𝑥𝐻𝑦)⟶(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦)) → dom (𝑥(2nd ‘𝐹)𝑦) = (𝑥𝐻𝑦)) |
| 43 | 41, 42 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → dom (𝑥(2nd ‘𝐹)𝑦) = (𝑥𝐻𝑦)) |
| 44 | 35, 43 | eqtrd 2656 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → dom (𝑥(2nd ‘𝑓)𝑦) = (𝑥𝐻𝑦)) |
| 45 | 34 | fveq1d 6193 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝑥(2nd ‘𝑓)𝑦)‘ℎ) = ((𝑥(2nd ‘𝐹)𝑦)‘ℎ)) |
| 46 | 25 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑔 = 𝐺) |
| 47 | 46 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (2nd ‘𝑔) = (2nd ‘𝐺)) |
| 48 | 47 | oveqd 6667 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑥(2nd ‘𝑔)𝑦) = (𝑥(2nd ‘𝐺)𝑦)) |
| 49 | 48 | fveq1d 6193 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝑥(2nd ‘𝑔)𝑦)‘ℎ) = ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)) |
| 50 | 45, 49 | opeq12d 4410 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉 = 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉) |
| 51 | 44, 50 | mpteq12dv 4733 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉) = (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉)) |
| 52 | 51 | 3impa 1259 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉) = (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉)) |
| 53 | 52 | mpt2eq3dva 6719 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))) |
| 54 | 31, 53 | eqtrd 2656 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))) |
| 55 | 29, 54 | opeq12d 4410 |
. . . 4
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → 〈(𝑥 ∈ 𝑏 ↦ 〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉))〉 = 〈(𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉) |
| 56 | 6, 20, 55 | csbied2 3561 |
. . 3
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → ⦋dom (1st
‘𝑓) / 𝑏⦌〈(𝑥 ∈ 𝑏 ↦ 〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉))〉 = 〈(𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉) |
| 57 | | elex 3212 |
. . . 4
⊢ (𝐹 ∈ (𝐶 Func 𝐷) → 𝐹 ∈ V) |
| 58 | 13, 57 | syl 17 |
. . 3
⊢ (𝜑 → 𝐹 ∈ V) |
| 59 | | prfval.d |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) |
| 60 | | elex 3212 |
. . . 4
⊢ (𝐺 ∈ (𝐶 Func 𝐸) → 𝐺 ∈ V) |
| 61 | 59, 60 | syl 17 |
. . 3
⊢ (𝜑 → 𝐺 ∈ V) |
| 62 | | opex 4932 |
. . . 4
⊢
〈(𝑥 ∈
𝐵 ↦
〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉 ∈ V |
| 63 | 62 | a1i 11 |
. . 3
⊢ (𝜑 → 〈(𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉 ∈ V) |
| 64 | 3, 56, 58, 61, 63 | ovmpt2d 6788 |
. 2
⊢ (𝜑 → (𝐹 〈,〉F 𝐺) = 〈(𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉) |
| 65 | 1, 64 | syl5eq 2668 |
1
⊢ (𝜑 → 𝑃 = 〈(𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉) |