MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prf2nd Structured version   Visualization version   GIF version

Theorem prf2nd 16845
Description: Cancellation of pairing with second projection. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
prf1st.p 𝑃 = (𝐹 ⟨,⟩F 𝐺)
prf1st.c (𝜑𝐹 ∈ (𝐶 Func 𝐷))
prf1st.d (𝜑𝐺 ∈ (𝐶 Func 𝐸))
Assertion
Ref Expression
prf2nd (𝜑 → ((𝐷 2ndF 𝐸) ∘func 𝑃) = 𝐺)

Proof of Theorem prf2nd
Dummy variables 𝑓 𝑥 𝑦 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . . 7 (𝐷 ×c 𝐸) = (𝐷 ×c 𝐸)
2 eqid 2622 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
3 eqid 2622 . . . . . . . 8 (Base‘𝐸) = (Base‘𝐸)
41, 2, 3xpcbas 16818 . . . . . . 7 ((Base‘𝐷) × (Base‘𝐸)) = (Base‘(𝐷 ×c 𝐸))
5 eqid 2622 . . . . . . 7 (Hom ‘(𝐷 ×c 𝐸)) = (Hom ‘(𝐷 ×c 𝐸))
6 prf1st.c . . . . . . . . . 10 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
7 funcrcl 16523 . . . . . . . . . 10 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
86, 7syl 17 . . . . . . . . 9 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
98simprd 479 . . . . . . . 8 (𝜑𝐷 ∈ Cat)
109adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
11 prf1st.d . . . . . . . . . 10 (𝜑𝐺 ∈ (𝐶 Func 𝐸))
12 funcrcl 16523 . . . . . . . . . 10 (𝐺 ∈ (𝐶 Func 𝐸) → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat))
1311, 12syl 17 . . . . . . . . 9 (𝜑 → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat))
1413simprd 479 . . . . . . . 8 (𝜑𝐸 ∈ Cat)
1514adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat)
16 eqid 2622 . . . . . . 7 (𝐷 2ndF 𝐸) = (𝐷 2ndF 𝐸)
17 eqid 2622 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
18 relfunc 16522 . . . . . . . . . . 11 Rel (𝐶 Func 𝐷)
19 1st2ndbr 7217 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2018, 6, 19sylancr 695 . . . . . . . . . 10 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2117, 2, 20funcf1 16526 . . . . . . . . 9 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
2221ffvelrnda 6359 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
23 relfunc 16522 . . . . . . . . . . 11 Rel (𝐶 Func 𝐸)
24 1st2ndbr 7217 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐸) ∧ 𝐺 ∈ (𝐶 Func 𝐸)) → (1st𝐺)(𝐶 Func 𝐸)(2nd𝐺))
2523, 11, 24sylancr 695 . . . . . . . . . 10 (𝜑 → (1st𝐺)(𝐶 Func 𝐸)(2nd𝐺))
2617, 3, 25funcf1 16526 . . . . . . . . 9 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐸))
2726ffvelrnda 6359 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐸))
28 opelxpi 5148 . . . . . . . 8 ((((1st𝐹)‘𝑥) ∈ (Base‘𝐷) ∧ ((1st𝐺)‘𝑥) ∈ (Base‘𝐸)) → ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ ∈ ((Base‘𝐷) × (Base‘𝐸)))
2922, 27, 28syl2anc 693 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ ∈ ((Base‘𝐷) × (Base‘𝐸)))
301, 4, 5, 10, 15, 16, 292ndf1 16835 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝐷 2ndF 𝐸))‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩) = (2nd ‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
31 fvex 6201 . . . . . . 7 ((1st𝐹)‘𝑥) ∈ V
32 fvex 6201 . . . . . . 7 ((1st𝐺)‘𝑥) ∈ V
3331, 32op2nd 7177 . . . . . 6 (2nd ‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩) = ((1st𝐺)‘𝑥)
3430, 33syl6eq 2672 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝐷 2ndF 𝐸))‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩) = ((1st𝐺)‘𝑥))
3534mpteq2dva 4744 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘(𝐷 2ndF 𝐸))‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩)) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st𝐺)‘𝑥)))
36 prf1st.p . . . . . . 7 𝑃 = (𝐹 ⟨,⟩F 𝐺)
37 eqid 2622 . . . . . . 7 (Hom ‘𝐶) = (Hom ‘𝐶)
3836, 17, 37, 6, 11prfval 16839 . . . . . 6 (𝜑𝑃 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
39 fvex 6201 . . . . . . . 8 (Base‘𝐶) ∈ V
4039mptex 6486 . . . . . . 7 (𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩) ∈ V
4139, 39mpt2ex 7247 . . . . . . 7 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)) ∈ V
4240, 41op1std 7178 . . . . . 6 (𝑃 = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ( ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩ → (1st𝑃) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
4338, 42syl 17 . . . . 5 (𝜑 → (1st𝑃) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
44 relfunc 16522 . . . . . . . 8 Rel ((𝐷 ×c 𝐸) Func 𝐸)
451, 9, 14, 162ndfcl 16838 . . . . . . . 8 (𝜑 → (𝐷 2ndF 𝐸) ∈ ((𝐷 ×c 𝐸) Func 𝐸))
46 1st2ndbr 7217 . . . . . . . 8 ((Rel ((𝐷 ×c 𝐸) Func 𝐸) ∧ (𝐷 2ndF 𝐸) ∈ ((𝐷 ×c 𝐸) Func 𝐸)) → (1st ‘(𝐷 2ndF 𝐸))((𝐷 ×c 𝐸) Func 𝐸)(2nd ‘(𝐷 2ndF 𝐸)))
4744, 45, 46sylancr 695 . . . . . . 7 (𝜑 → (1st ‘(𝐷 2ndF 𝐸))((𝐷 ×c 𝐸) Func 𝐸)(2nd ‘(𝐷 2ndF 𝐸)))
484, 3, 47funcf1 16526 . . . . . 6 (𝜑 → (1st ‘(𝐷 2ndF 𝐸)):((Base‘𝐷) × (Base‘𝐸))⟶(Base‘𝐸))
4948feqmptd 6249 . . . . 5 (𝜑 → (1st ‘(𝐷 2ndF 𝐸)) = (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐸)) ↦ ((1st ‘(𝐷 2ndF 𝐸))‘𝑢)))
50 fveq2 6191 . . . . 5 (𝑢 = ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩ → ((1st ‘(𝐷 2ndF 𝐸))‘𝑢) = ((1st ‘(𝐷 2ndF 𝐸))‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
5129, 43, 49, 50fmptco 6396 . . . 4 (𝜑 → ((1st ‘(𝐷 2ndF 𝐸)) ∘ (1st𝑃)) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘(𝐷 2ndF 𝐸))‘⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩)))
5226feqmptd 6249 . . . 4 (𝜑 → (1st𝐺) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st𝐺)‘𝑥)))
5335, 51, 523eqtr4d 2666 . . 3 (𝜑 → ((1st ‘(𝐷 2ndF 𝐸)) ∘ (1st𝑃)) = (1st𝐺))
549ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐷 ∈ Cat)
5514ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐸 ∈ Cat)
56 relfunc 16522 . . . . . . . . . . . . . . . 16 Rel (𝐶 Func (𝐷 ×c 𝐸))
5736, 1, 6, 11prfcl 16843 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ (𝐶 Func (𝐷 ×c 𝐸)))
58 1st2ndbr 7217 . . . . . . . . . . . . . . . 16 ((Rel (𝐶 Func (𝐷 ×c 𝐸)) ∧ 𝑃 ∈ (𝐶 Func (𝐷 ×c 𝐸))) → (1st𝑃)(𝐶 Func (𝐷 ×c 𝐸))(2nd𝑃))
5956, 57, 58sylancr 695 . . . . . . . . . . . . . . 15 (𝜑 → (1st𝑃)(𝐶 Func (𝐷 ×c 𝐸))(2nd𝑃))
6017, 4, 59funcf1 16526 . . . . . . . . . . . . . 14 (𝜑 → (1st𝑃):(Base‘𝐶)⟶((Base‘𝐷) × (Base‘𝐸)))
6160ffvelrnda 6359 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝑃)‘𝑥) ∈ ((Base‘𝐷) × (Base‘𝐸)))
6261adantrr 753 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝑃)‘𝑥) ∈ ((Base‘𝐷) × (Base‘𝐸)))
6362adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((1st𝑃)‘𝑥) ∈ ((Base‘𝐷) × (Base‘𝐸)))
6460ffvelrnda 6359 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (Base‘𝐶)) → ((1st𝑃)‘𝑦) ∈ ((Base‘𝐷) × (Base‘𝐸)))
6564adantrl 752 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝑃)‘𝑦) ∈ ((Base‘𝐷) × (Base‘𝐸)))
6665adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((1st𝑃)‘𝑦) ∈ ((Base‘𝐷) × (Base‘𝐸)))
671, 4, 5, 54, 55, 16, 63, 662ndf2 16836 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)) = (2nd ↾ (((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦))))
6867fveq1d 6193 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦))‘((𝑥(2nd𝑃)𝑦)‘𝑓)) = ((2nd ↾ (((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦)))‘((𝑥(2nd𝑃)𝑦)‘𝑓)))
6959adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝑃)(𝐶 Func (𝐷 ×c 𝐸))(2nd𝑃))
70 simprl 794 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
71 simprr 796 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
7217, 37, 5, 69, 70, 71funcf2 16528 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝑃)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦)))
7372ffvelrnda 6359 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝑃)𝑦)‘𝑓) ∈ (((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦)))
74 fvres 6207 . . . . . . . . . 10 (((𝑥(2nd𝑃)𝑦)‘𝑓) ∈ (((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦)) → ((2nd ↾ (((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦)))‘((𝑥(2nd𝑃)𝑦)‘𝑓)) = (2nd ‘((𝑥(2nd𝑃)𝑦)‘𝑓)))
7573, 74syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((2nd ↾ (((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦)))‘((𝑥(2nd𝑃)𝑦)‘𝑓)) = (2nd ‘((𝑥(2nd𝑃)𝑦)‘𝑓)))
766ad2antrr 762 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐹 ∈ (𝐶 Func 𝐷))
7711ad2antrr 762 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐺 ∈ (𝐶 Func 𝐸))
7870adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶))
7971adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶))
80 simpr 477 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
8136, 17, 37, 76, 77, 78, 79, 80prf2 16842 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝑃)𝑦)‘𝑓) = ⟨((𝑥(2nd𝐹)𝑦)‘𝑓), ((𝑥(2nd𝐺)𝑦)‘𝑓)⟩)
8281fveq2d 6195 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (2nd ‘((𝑥(2nd𝑃)𝑦)‘𝑓)) = (2nd ‘⟨((𝑥(2nd𝐹)𝑦)‘𝑓), ((𝑥(2nd𝐺)𝑦)‘𝑓)⟩))
83 fvex 6201 . . . . . . . . . . 11 ((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ V
84 fvex 6201 . . . . . . . . . . 11 ((𝑥(2nd𝐺)𝑦)‘𝑓) ∈ V
8583, 84op2nd 7177 . . . . . . . . . 10 (2nd ‘⟨((𝑥(2nd𝐹)𝑦)‘𝑓), ((𝑥(2nd𝐺)𝑦)‘𝑓)⟩) = ((𝑥(2nd𝐺)𝑦)‘𝑓)
8682, 85syl6eq 2672 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (2nd ‘((𝑥(2nd𝑃)𝑦)‘𝑓)) = ((𝑥(2nd𝐺)𝑦)‘𝑓))
8768, 75, 863eqtrd 2660 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦))‘((𝑥(2nd𝑃)𝑦)‘𝑓)) = ((𝑥(2nd𝐺)𝑦)‘𝑓))
8887mpteq2dva 4744 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦))‘((𝑥(2nd𝑃)𝑦)‘𝑓))) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd𝐺)𝑦)‘𝑓)))
89 eqid 2622 . . . . . . . . 9 (Hom ‘𝐸) = (Hom ‘𝐸)
9047adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘(𝐷 2ndF 𝐸))((𝐷 ×c 𝐸) Func 𝐸)(2nd ‘(𝐷 2ndF 𝐸)))
914, 5, 89, 90, 62, 65funcf2 16528 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)):(((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦))⟶(((1st ‘(𝐷 2ndF 𝐸))‘((1st𝑃)‘𝑥))(Hom ‘𝐸)((1st ‘(𝐷 2ndF 𝐸))‘((1st𝑃)‘𝑦))))
92 fcompt 6400 . . . . . . . 8 (((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)):(((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦))⟶(((1st ‘(𝐷 2ndF 𝐸))‘((1st𝑃)‘𝑥))(Hom ‘𝐸)((1st ‘(𝐷 2ndF 𝐸))‘((1st𝑃)‘𝑦))) ∧ (𝑥(2nd𝑃)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝑃)‘𝑥)(Hom ‘(𝐷 ×c 𝐸))((1st𝑃)‘𝑦))) → ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦)) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦))‘((𝑥(2nd𝑃)𝑦)‘𝑓))))
9391, 72, 92syl2anc 693 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦)) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦))‘((𝑥(2nd𝑃)𝑦)‘𝑓))))
9425adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐺)(𝐶 Func 𝐸)(2nd𝐺))
9517, 37, 89, 94, 70, 71funcf2 16528 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘𝑥)(Hom ‘𝐸)((1st𝐺)‘𝑦)))
9695feqmptd 6249 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐺)𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd𝐺)𝑦)‘𝑓)))
9788, 93, 963eqtr4d 2666 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦)) = (𝑥(2nd𝐺)𝑦))
98973impb 1260 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦)) = (𝑥(2nd𝐺)𝑦))
9998mpt2eq3dva 6719 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐺)𝑦)))
10017, 25funcfn2 16529 . . . . 5 (𝜑 → (2nd𝐺) Fn ((Base‘𝐶) × (Base‘𝐶)))
101 fnov 6768 . . . . 5 ((2nd𝐺) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd𝐺) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐺)𝑦)))
102100, 101sylib 208 . . . 4 (𝜑 → (2nd𝐺) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐺)𝑦)))
10399, 102eqtr4d 2659 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦))) = (2nd𝐺))
10453, 103opeq12d 4410 . 2 (𝜑 → ⟨((1st ‘(𝐷 2ndF 𝐸)) ∘ (1st𝑃)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦)))⟩ = ⟨(1st𝐺), (2nd𝐺)⟩)
10517, 57, 45cofuval 16542 . 2 (𝜑 → ((𝐷 2ndF 𝐸) ∘func 𝑃) = ⟨((1st ‘(𝐷 2ndF 𝐸)) ∘ (1st𝑃)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝑃)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝑃)‘𝑦)) ∘ (𝑥(2nd𝑃)𝑦)))⟩)
106 1st2nd 7214 . . 3 ((Rel (𝐶 Func 𝐸) ∧ 𝐺 ∈ (𝐶 Func 𝐸)) → 𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
10723, 11, 106sylancr 695 . 2 (𝜑𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
108104, 105, 1073eqtr4d 2666 1 (𝜑 → ((𝐷 2ndF 𝐸) ∘func 𝑃) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  cop 4183   class class class wbr 4653  cmpt 4729   × cxp 5112  cres 5116  ccom 5118  Rel wrel 5119   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  Basecbs 15857  Hom chom 15952  Catccat 16325   Func cfunc 16514  func ccofu 16516   ×c cxpc 16808   2ndF c2ndf 16810   ⟨,⟩F cprf 16811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-func 16518  df-cofu 16520  df-xpc 16812  df-2ndf 16814  df-prf 16815
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator