| Step | Hyp | Ref
| Expression |
| 1 | | prfcl.p |
. . . 4
⊢ 𝑃 = (𝐹 〈,〉F 𝐺) |
| 2 | | eqid 2622 |
. . . 4
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 3 | | eqid 2622 |
. . . 4
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 4 | | prfcl.c |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 5 | | prfcl.d |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) |
| 6 | 1, 2, 3, 4, 5 | prfval 16839 |
. . 3
⊢ (𝜑 → 𝑃 = 〈(𝑥 ∈ (Base‘𝐶) ↦ 〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉) |
| 7 | | fvex 6201 |
. . . . . . 7
⊢
(Base‘𝐶)
∈ V |
| 8 | 7 | mptex 6486 |
. . . . . 6
⊢ (𝑥 ∈ (Base‘𝐶) ↦ 〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉) ∈ V |
| 9 | 7, 7 | mpt2ex 7247 |
. . . . . 6
⊢ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉)) ∈ V |
| 10 | 8, 9 | op1std 7178 |
. . . . 5
⊢ (𝑃 = 〈(𝑥 ∈ (Base‘𝐶) ↦ 〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉 → (1st
‘𝑃) = (𝑥 ∈ (Base‘𝐶) ↦ 〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉)) |
| 11 | 6, 10 | syl 17 |
. . . 4
⊢ (𝜑 → (1st
‘𝑃) = (𝑥 ∈ (Base‘𝐶) ↦ 〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉)) |
| 12 | 8, 9 | op2ndd 7179 |
. . . . 5
⊢ (𝑃 = 〈(𝑥 ∈ (Base‘𝐶) ↦ 〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉 → (2nd
‘𝑃) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))) |
| 13 | 6, 12 | syl 17 |
. . . 4
⊢ (𝜑 → (2nd
‘𝑃) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))) |
| 14 | 11, 13 | opeq12d 4410 |
. . 3
⊢ (𝜑 → 〈(1st
‘𝑃), (2nd
‘𝑃)〉 =
〈(𝑥 ∈
(Base‘𝐶) ↦
〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉) |
| 15 | 6, 14 | eqtr4d 2659 |
. 2
⊢ (𝜑 → 𝑃 = 〈(1st ‘𝑃), (2nd ‘𝑃)〉) |
| 16 | | prfcl.t |
. . . . 5
⊢ 𝑇 = (𝐷 ×c 𝐸) |
| 17 | | eqid 2622 |
. . . . 5
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 18 | | eqid 2622 |
. . . . 5
⊢
(Base‘𝐸) =
(Base‘𝐸) |
| 19 | 16, 17, 18 | xpcbas 16818 |
. . . 4
⊢
((Base‘𝐷)
× (Base‘𝐸)) =
(Base‘𝑇) |
| 20 | | eqid 2622 |
. . . 4
⊢ (Hom
‘𝑇) = (Hom
‘𝑇) |
| 21 | | eqid 2622 |
. . . 4
⊢
(Id‘𝐶) =
(Id‘𝐶) |
| 22 | | eqid 2622 |
. . . 4
⊢
(Id‘𝑇) =
(Id‘𝑇) |
| 23 | | eqid 2622 |
. . . 4
⊢
(comp‘𝐶) =
(comp‘𝐶) |
| 24 | | eqid 2622 |
. . . 4
⊢
(comp‘𝑇) =
(comp‘𝑇) |
| 25 | | funcrcl 16523 |
. . . . . 6
⊢ (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
| 26 | 4, 25 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
| 27 | 26 | simpld 475 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 28 | 26 | simprd 479 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ Cat) |
| 29 | | funcrcl 16523 |
. . . . . . 7
⊢ (𝐺 ∈ (𝐶 Func 𝐸) → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| 30 | 5, 29 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| 31 | 30 | simprd 479 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ Cat) |
| 32 | 16, 28, 31 | xpccat 16830 |
. . . 4
⊢ (𝜑 → 𝑇 ∈ Cat) |
| 33 | | relfunc 16522 |
. . . . . . . . . 10
⊢ Rel
(𝐶 Func 𝐷) |
| 34 | | 1st2ndbr 7217 |
. . . . . . . . . 10
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 35 | 33, 4, 34 | sylancr 695 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 36 | 2, 17, 35 | funcf1 16526 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) |
| 37 | 36 | ffvelrnda 6359 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐹)‘𝑥) ∈ (Base‘𝐷)) |
| 38 | | relfunc 16522 |
. . . . . . . . . 10
⊢ Rel
(𝐶 Func 𝐸) |
| 39 | | 1st2ndbr 7217 |
. . . . . . . . . 10
⊢ ((Rel
(𝐶 Func 𝐸) ∧ 𝐺 ∈ (𝐶 Func 𝐸)) → (1st ‘𝐺)(𝐶 Func 𝐸)(2nd ‘𝐺)) |
| 40 | 38, 5, 39 | sylancr 695 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘𝐺)(𝐶 Func 𝐸)(2nd ‘𝐺)) |
| 41 | 2, 18, 40 | funcf1 16526 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘𝐺):(Base‘𝐶)⟶(Base‘𝐸)) |
| 42 | 41 | ffvelrnda 6359 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐺)‘𝑥) ∈ (Base‘𝐸)) |
| 43 | | opelxpi 5148 |
. . . . . . 7
⊢
((((1st ‘𝐹)‘𝑥) ∈ (Base‘𝐷) ∧ ((1st ‘𝐺)‘𝑥) ∈ (Base‘𝐸)) → 〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 ∈ ((Base‘𝐷) × (Base‘𝐸))) |
| 44 | 37, 42, 43 | syl2anc 693 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉 ∈ ((Base‘𝐷) × (Base‘𝐸))) |
| 45 | | eqid 2622 |
. . . . . 6
⊢ (𝑥 ∈ (Base‘𝐶) ↦ 〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉) = (𝑥 ∈ (Base‘𝐶) ↦ 〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉) |
| 46 | 44, 45 | fmptd 6385 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ 〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉):(Base‘𝐶)⟶((Base‘𝐷) × (Base‘𝐸))) |
| 47 | 11 | feq1d 6030 |
. . . . 5
⊢ (𝜑 → ((1st
‘𝑃):(Base‘𝐶)⟶((Base‘𝐷) × (Base‘𝐸)) ↔ (𝑥 ∈ (Base‘𝐶) ↦ 〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉):(Base‘𝐶)⟶((Base‘𝐷) × (Base‘𝐸)))) |
| 48 | 46, 47 | mpbird 247 |
. . . 4
⊢ (𝜑 → (1st
‘𝑃):(Base‘𝐶)⟶((Base‘𝐷) × (Base‘𝐸))) |
| 49 | | eqid 2622 |
. . . . . 6
⊢ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉)) |
| 50 | | ovex 6678 |
. . . . . . 7
⊢ (𝑥(Hom ‘𝐶)𝑦) ∈ V |
| 51 | 50 | mptex 6486 |
. . . . . 6
⊢ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉) ∈ V |
| 52 | 49, 51 | fnmpt2i 7239 |
. . . . 5
⊢ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉)) Fn ((Base‘𝐶) × (Base‘𝐶)) |
| 53 | 13 | fneq1d 5981 |
. . . . 5
⊢ (𝜑 → ((2nd
‘𝑃) Fn
((Base‘𝐶) ×
(Base‘𝐶)) ↔
(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉)) Fn ((Base‘𝐶) × (Base‘𝐶)))) |
| 54 | 52, 53 | mpbiri 248 |
. . . 4
⊢ (𝜑 → (2nd
‘𝑃) Fn
((Base‘𝐶) ×
(Base‘𝐶))) |
| 55 | | eqid 2622 |
. . . . . . . . . 10
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
| 56 | 35 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 57 | | simprl 794 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) |
| 58 | | simprr 796 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) |
| 59 | 2, 3, 55, 56, 57, 58 | funcf2 16528 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦))) |
| 60 | 59 | ffvelrnda 6359 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘𝐹)𝑦)‘ℎ) ∈ (((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦))) |
| 61 | | eqid 2622 |
. . . . . . . . . 10
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) |
| 62 | 40 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘𝐺)(𝐶 Func 𝐸)(2nd ‘𝐺)) |
| 63 | 2, 3, 61, 62, 57, 58 | funcf2 16528 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘𝐺)‘𝑥)(Hom ‘𝐸)((1st ‘𝐺)‘𝑦))) |
| 64 | 63 | ffvelrnda 6359 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘𝐺)𝑦)‘ℎ) ∈ (((1st ‘𝐺)‘𝑥)(Hom ‘𝐸)((1st ‘𝐺)‘𝑦))) |
| 65 | | opelxpi 5148 |
. . . . . . . 8
⊢ ((((𝑥(2nd ‘𝐹)𝑦)‘ℎ) ∈ (((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦)) ∧ ((𝑥(2nd ‘𝐺)𝑦)‘ℎ) ∈ (((1st ‘𝐺)‘𝑥)(Hom ‘𝐸)((1st ‘𝐺)‘𝑦))) → 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉 ∈ ((((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦)) × (((1st ‘𝐺)‘𝑥)(Hom ‘𝐸)((1st ‘𝐺)‘𝑦)))) |
| 66 | 60, 64, 65 | syl2anc 693 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉 ∈ ((((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦)) × (((1st ‘𝐺)‘𝑥)(Hom ‘𝐸)((1st ‘𝐺)‘𝑦)))) |
| 67 | 4 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 68 | 5 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐺 ∈ (𝐶 Func 𝐸)) |
| 69 | 1, 2, 3, 67, 68, 57 | prf1 16840 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘𝑃)‘𝑥) = 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉) |
| 70 | 1, 2, 3, 67, 68, 58 | prf1 16840 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘𝑃)‘𝑦) = 〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉) |
| 71 | 69, 70 | oveq12d 6668 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st ‘𝑃)‘𝑥)(Hom ‘𝑇)((1st ‘𝑃)‘𝑦)) = (〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(Hom ‘𝑇)〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉)) |
| 72 | 37 | adantrr 753 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘𝐹)‘𝑥) ∈ (Base‘𝐷)) |
| 73 | 42 | adantrr 753 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘𝐺)‘𝑥) ∈ (Base‘𝐸)) |
| 74 | 36 | ffvelrnda 6359 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st ‘𝐹)‘𝑦) ∈ (Base‘𝐷)) |
| 75 | 74 | adantrl 752 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘𝐹)‘𝑦) ∈ (Base‘𝐷)) |
| 76 | 41 | ffvelrnda 6359 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st ‘𝐺)‘𝑦) ∈ (Base‘𝐸)) |
| 77 | 76 | adantrl 752 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘𝐺)‘𝑦) ∈ (Base‘𝐸)) |
| 78 | 16, 17, 18, 55, 61, 72, 73, 75, 77, 20 | xpchom2 16826 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉(Hom ‘𝑇)〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉) = ((((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦)) × (((1st ‘𝐺)‘𝑥)(Hom ‘𝐸)((1st ‘𝐺)‘𝑦)))) |
| 79 | 71, 78 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st ‘𝑃)‘𝑥)(Hom ‘𝑇)((1st ‘𝑃)‘𝑦)) = ((((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦)) × (((1st ‘𝐺)‘𝑥)(Hom ‘𝐸)((1st ‘𝐺)‘𝑦)))) |
| 80 | 79 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((1st ‘𝑃)‘𝑥)(Hom ‘𝑇)((1st ‘𝑃)‘𝑦)) = ((((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦)) × (((1st ‘𝐺)‘𝑥)(Hom ‘𝐸)((1st ‘𝐺)‘𝑦)))) |
| 81 | 66, 80 | eleqtrrd 2704 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉 ∈ (((1st ‘𝑃)‘𝑥)(Hom ‘𝑇)((1st ‘𝑃)‘𝑦))) |
| 82 | | eqid 2622 |
. . . . . 6
⊢ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉) = (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉) |
| 83 | 81, 82 | fmptd 6385 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘𝑃)‘𝑥)(Hom ‘𝑇)((1st ‘𝑃)‘𝑦))) |
| 84 | 13 | oveqd 6667 |
. . . . . . 7
⊢ (𝜑 → (𝑥(2nd ‘𝑃)𝑦) = (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))𝑦)) |
| 85 | 49 | ovmpt4g 6783 |
. . . . . . . 8
⊢ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉) ∈ V) → (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))𝑦) = (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉)) |
| 86 | 51, 85 | mp3an3 1413 |
. . . . . . 7
⊢ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))𝑦) = (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉)) |
| 87 | 84, 86 | sylan9eq 2676 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘𝑃)𝑦) = (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉)) |
| 88 | 87 | feq1d 6030 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝑥(2nd ‘𝑃)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘𝑃)‘𝑥)(Hom ‘𝑇)((1st ‘𝑃)‘𝑦)) ↔ (ℎ ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘𝑃)‘𝑥)(Hom ‘𝑇)((1st ‘𝑃)‘𝑦)))) |
| 89 | 83, 88 | mpbird 247 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘𝑃)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘𝑃)‘𝑥)(Hom ‘𝑇)((1st ‘𝑃)‘𝑦))) |
| 90 | | eqid 2622 |
. . . . . . 7
⊢
(Id‘𝐷) =
(Id‘𝐷) |
| 91 | 35 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 92 | | simpr 477 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶)) |
| 93 | 2, 21, 90, 91, 92 | funcid 16530 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd ‘𝐹)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘((1st ‘𝐹)‘𝑥))) |
| 94 | | eqid 2622 |
. . . . . . 7
⊢
(Id‘𝐸) =
(Id‘𝐸) |
| 95 | 40 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (1st ‘𝐺)(𝐶 Func 𝐸)(2nd ‘𝐺)) |
| 96 | 2, 21, 94, 95, 92 | funcid 16530 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd ‘𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐸)‘((1st ‘𝐺)‘𝑥))) |
| 97 | 93, 96 | opeq12d 4410 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 〈((𝑥(2nd ‘𝐹)𝑥)‘((Id‘𝐶)‘𝑥)), ((𝑥(2nd ‘𝐺)𝑥)‘((Id‘𝐶)‘𝑥))〉 = 〈((Id‘𝐷)‘((1st ‘𝐹)‘𝑥)), ((Id‘𝐸)‘((1st ‘𝐺)‘𝑥))〉) |
| 98 | 4 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 99 | 5 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐺 ∈ (𝐶 Func 𝐸)) |
| 100 | 27 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat) |
| 101 | 2, 3, 21, 100, 92 | catidcl 16343 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥)) |
| 102 | 1, 2, 3, 98, 99, 92, 92, 101 | prf2 16842 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd ‘𝑃)𝑥)‘((Id‘𝐶)‘𝑥)) = 〈((𝑥(2nd ‘𝐹)𝑥)‘((Id‘𝐶)‘𝑥)), ((𝑥(2nd ‘𝐺)𝑥)‘((Id‘𝐶)‘𝑥))〉) |
| 103 | 1, 2, 3, 98, 99, 92 | prf1 16840 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝑃)‘𝑥) = 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉) |
| 104 | 103 | fveq2d 6195 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑇)‘((1st ‘𝑃)‘𝑥)) = ((Id‘𝑇)‘〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉)) |
| 105 | 28 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat) |
| 106 | 31 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat) |
| 107 | 16, 105, 106, 17, 18, 90, 94, 22, 37, 42 | xpcid 16829 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑇)‘〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉) = 〈((Id‘𝐷)‘((1st ‘𝐹)‘𝑥)), ((Id‘𝐸)‘((1st ‘𝐺)‘𝑥))〉) |
| 108 | 104, 107 | eqtrd 2656 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((Id‘𝑇)‘((1st ‘𝑃)‘𝑥)) = 〈((Id‘𝐷)‘((1st ‘𝐹)‘𝑥)), ((Id‘𝐸)‘((1st ‘𝐺)‘𝑥))〉) |
| 109 | 97, 102, 108 | 3eqtr4d 2666 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd ‘𝑃)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝑇)‘((1st ‘𝑃)‘𝑥))) |
| 110 | | eqid 2622 |
. . . . . . 7
⊢
(comp‘𝐷) =
(comp‘𝐷) |
| 111 | 35 | 3ad2ant1 1082 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 112 | | simp21 1094 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥 ∈ (Base‘𝐶)) |
| 113 | | simp22 1095 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦 ∈ (Base‘𝐶)) |
| 114 | | simp23 1096 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧 ∈ (Base‘𝐶)) |
| 115 | | simp3l 1089 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
| 116 | | simp3r 1090 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) |
| 117 | 2, 3, 23, 110, 111, 112, 113, 114, 115, 116 | funcco 16531 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd ‘𝐹)𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘𝐹)𝑧)‘𝑔)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑥(2nd ‘𝐹)𝑦)‘𝑓))) |
| 118 | | eqid 2622 |
. . . . . . 7
⊢
(comp‘𝐸) =
(comp‘𝐸) |
| 119 | 5 | 3ad2ant1 1082 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐺 ∈ (𝐶 Func 𝐸)) |
| 120 | 38, 119, 39 | sylancr 695 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st ‘𝐺)(𝐶 Func 𝐸)(2nd ‘𝐺)) |
| 121 | 2, 3, 23, 118, 120, 112, 113, 114, 115, 116 | funcco 16531 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd ‘𝐺)𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘𝐺)𝑧)‘𝑔)(〈((1st ‘𝐺)‘𝑥), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐸)((1st ‘𝐺)‘𝑧))((𝑥(2nd ‘𝐺)𝑦)‘𝑓))) |
| 122 | 117, 121 | opeq12d 4410 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 〈((𝑥(2nd ‘𝐹)𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)), ((𝑥(2nd ‘𝐺)𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))〉 = 〈(((𝑦(2nd ‘𝐹)𝑧)‘𝑔)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑥(2nd ‘𝐹)𝑦)‘𝑓)), (((𝑦(2nd ‘𝐺)𝑧)‘𝑔)(〈((1st ‘𝐺)‘𝑥), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐸)((1st ‘𝐺)‘𝑧))((𝑥(2nd ‘𝐺)𝑦)‘𝑓))〉) |
| 123 | 4 | 3ad2ant1 1082 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 124 | 27 | 3ad2ant1 1082 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐶 ∈ Cat) |
| 125 | 2, 3, 23, 124, 112, 113, 114, 115, 116 | catcocl 16346 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) |
| 126 | 1, 2, 3, 123, 119, 112, 114, 125 | prf2 16842 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd ‘𝑃)𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) = 〈((𝑥(2nd ‘𝐹)𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)), ((𝑥(2nd ‘𝐺)𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓))〉) |
| 127 | 1, 2, 3, 123, 119, 112 | prf1 16840 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st ‘𝑃)‘𝑥) = 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉) |
| 128 | 1, 2, 3, 123, 119, 113 | prf1 16840 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st ‘𝑃)‘𝑦) = 〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉) |
| 129 | 127, 128 | opeq12d 4410 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 〈((1st
‘𝑃)‘𝑥), ((1st ‘𝑃)‘𝑦)〉 = 〈〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉, 〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉〉) |
| 130 | 1, 2, 3, 123, 119, 114 | prf1 16840 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st ‘𝑃)‘𝑧) = 〈((1st ‘𝐹)‘𝑧), ((1st ‘𝐺)‘𝑧)〉) |
| 131 | 129, 130 | oveq12d 6668 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (〈((1st
‘𝑃)‘𝑥), ((1st ‘𝑃)‘𝑦)〉(comp‘𝑇)((1st ‘𝑃)‘𝑧)) = (〈〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉, 〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉〉(comp‘𝑇)〈((1st ‘𝐹)‘𝑧), ((1st ‘𝐺)‘𝑧)〉)) |
| 132 | 1, 2, 3, 123, 119, 113, 114, 116 | prf2 16842 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd ‘𝑃)𝑧)‘𝑔) = 〈((𝑦(2nd ‘𝐹)𝑧)‘𝑔), ((𝑦(2nd ‘𝐺)𝑧)‘𝑔)〉) |
| 133 | 1, 2, 3, 123, 119, 112, 113, 115 | prf2 16842 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd ‘𝑃)𝑦)‘𝑓) = 〈((𝑥(2nd ‘𝐹)𝑦)‘𝑓), ((𝑥(2nd ‘𝐺)𝑦)‘𝑓)〉) |
| 134 | 131, 132,
133 | oveq123d 6671 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd ‘𝑃)𝑧)‘𝑔)(〈((1st ‘𝑃)‘𝑥), ((1st ‘𝑃)‘𝑦)〉(comp‘𝑇)((1st ‘𝑃)‘𝑧))((𝑥(2nd ‘𝑃)𝑦)‘𝑓)) = (〈((𝑦(2nd ‘𝐹)𝑧)‘𝑔), ((𝑦(2nd ‘𝐺)𝑧)‘𝑔)〉(〈〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉, 〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉〉(comp‘𝑇)〈((1st ‘𝐹)‘𝑧), ((1st ‘𝐺)‘𝑧)〉)〈((𝑥(2nd ‘𝐹)𝑦)‘𝑓), ((𝑥(2nd ‘𝐺)𝑦)‘𝑓)〉)) |
| 135 | 36 | 3ad2ant1 1082 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st ‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) |
| 136 | 135, 112 | ffvelrnd 6360 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st ‘𝐹)‘𝑥) ∈ (Base‘𝐷)) |
| 137 | 41 | 3ad2ant1 1082 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (1st ‘𝐺):(Base‘𝐶)⟶(Base‘𝐸)) |
| 138 | 137, 112 | ffvelrnd 6360 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st ‘𝐺)‘𝑥) ∈ (Base‘𝐸)) |
| 139 | 135, 113 | ffvelrnd 6360 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st ‘𝐹)‘𝑦) ∈ (Base‘𝐷)) |
| 140 | 137, 113 | ffvelrnd 6360 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st ‘𝐺)‘𝑦) ∈ (Base‘𝐸)) |
| 141 | 135, 114 | ffvelrnd 6360 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st ‘𝐹)‘𝑧) ∈ (Base‘𝐷)) |
| 142 | 137, 114 | ffvelrnd 6360 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((1st ‘𝐺)‘𝑧) ∈ (Base‘𝐸)) |
| 143 | 2, 3, 55, 111, 112, 113 | funcf2 16528 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥(2nd ‘𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦))) |
| 144 | 143, 115 | ffvelrnd 6360 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd ‘𝐹)𝑦)‘𝑓) ∈ (((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦))) |
| 145 | 2, 3, 61, 120, 112, 113 | funcf2 16528 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥(2nd ‘𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘𝐺)‘𝑥)(Hom ‘𝐸)((1st ‘𝐺)‘𝑦))) |
| 146 | 145, 115 | ffvelrnd 6360 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd ‘𝐺)𝑦)‘𝑓) ∈ (((1st ‘𝐺)‘𝑥)(Hom ‘𝐸)((1st ‘𝐺)‘𝑦))) |
| 147 | 2, 3, 55, 111, 113, 114 | funcf2 16528 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑦(2nd ‘𝐹)𝑧):(𝑦(Hom ‘𝐶)𝑧)⟶(((1st ‘𝐹)‘𝑦)(Hom ‘𝐷)((1st ‘𝐹)‘𝑧))) |
| 148 | 147, 116 | ffvelrnd 6360 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd ‘𝐹)𝑧)‘𝑔) ∈ (((1st ‘𝐹)‘𝑦)(Hom ‘𝐷)((1st ‘𝐹)‘𝑧))) |
| 149 | 2, 3, 61, 120, 113, 114 | funcf2 16528 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑦(2nd ‘𝐺)𝑧):(𝑦(Hom ‘𝐶)𝑧)⟶(((1st ‘𝐺)‘𝑦)(Hom ‘𝐸)((1st ‘𝐺)‘𝑧))) |
| 150 | 149, 116 | ffvelrnd 6360 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd ‘𝐺)𝑧)‘𝑔) ∈ (((1st ‘𝐺)‘𝑦)(Hom ‘𝐸)((1st ‘𝐺)‘𝑧))) |
| 151 | 16, 17, 18, 55, 61, 136, 138, 139, 140, 110, 118, 24, 141, 142, 144, 146, 148, 150 | xpcco2 16827 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (〈((𝑦(2nd ‘𝐹)𝑧)‘𝑔), ((𝑦(2nd ‘𝐺)𝑧)‘𝑔)〉(〈〈((1st
‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉, 〈((1st ‘𝐹)‘𝑦), ((1st ‘𝐺)‘𝑦)〉〉(comp‘𝑇)〈((1st ‘𝐹)‘𝑧), ((1st ‘𝐺)‘𝑧)〉)〈((𝑥(2nd ‘𝐹)𝑦)‘𝑓), ((𝑥(2nd ‘𝐺)𝑦)‘𝑓)〉) = 〈(((𝑦(2nd ‘𝐹)𝑧)‘𝑔)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑥(2nd ‘𝐹)𝑦)‘𝑓)), (((𝑦(2nd ‘𝐺)𝑧)‘𝑔)(〈((1st ‘𝐺)‘𝑥), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐸)((1st ‘𝐺)‘𝑧))((𝑥(2nd ‘𝐺)𝑦)‘𝑓))〉) |
| 152 | 134, 151 | eqtrd 2656 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd ‘𝑃)𝑧)‘𝑔)(〈((1st ‘𝑃)‘𝑥), ((1st ‘𝑃)‘𝑦)〉(comp‘𝑇)((1st ‘𝑃)‘𝑧))((𝑥(2nd ‘𝑃)𝑦)‘𝑓)) = 〈(((𝑦(2nd ‘𝐹)𝑧)‘𝑔)(〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐹)‘𝑦)〉(comp‘𝐷)((1st ‘𝐹)‘𝑧))((𝑥(2nd ‘𝐹)𝑦)‘𝑓)), (((𝑦(2nd ‘𝐺)𝑧)‘𝑔)(〈((1st ‘𝐺)‘𝑥), ((1st ‘𝐺)‘𝑦)〉(comp‘𝐸)((1st ‘𝐺)‘𝑧))((𝑥(2nd ‘𝐺)𝑦)‘𝑓))〉) |
| 153 | 122, 126,
152 | 3eqtr4d 2666 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd ‘𝑃)𝑧)‘(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘𝑃)𝑧)‘𝑔)(〈((1st ‘𝑃)‘𝑥), ((1st ‘𝑃)‘𝑦)〉(comp‘𝑇)((1st ‘𝑃)‘𝑧))((𝑥(2nd ‘𝑃)𝑦)‘𝑓))) |
| 154 | 2, 19, 3, 20, 21, 22, 23, 24, 27, 32, 48, 54, 89, 109, 153 | isfuncd 16525 |
. . 3
⊢ (𝜑 → (1st
‘𝑃)(𝐶 Func 𝑇)(2nd ‘𝑃)) |
| 155 | | df-br 4654 |
. . 3
⊢
((1st ‘𝑃)(𝐶 Func 𝑇)(2nd ‘𝑃) ↔ 〈(1st ‘𝑃), (2nd ‘𝑃)〉 ∈ (𝐶 Func 𝑇)) |
| 156 | 154, 155 | sylib 208 |
. 2
⊢ (𝜑 → 〈(1st
‘𝑃), (2nd
‘𝑃)〉 ∈
(𝐶 Func 𝑇)) |
| 157 | 15, 156 | eqeltrd 2701 |
1
⊢ (𝜑 → 𝑃 ∈ (𝐶 Func 𝑇)) |