| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ptcldmpt | Structured version Visualization version GIF version | ||
| Description: A closed box in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| ptcldmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ptcldmpt.j | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐽 ∈ Top) |
| ptcldmpt.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (Clsd‘𝐽)) |
| Ref | Expression |
|---|---|
| ptcldmpt | ⊢ (𝜑 → X𝑘 ∈ 𝐴 𝐶 ∈ (Clsd‘(∏t‘(𝑘 ∈ 𝐴 ↦ 𝐽)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2764 | . . 3 ⊢ Ⅎ𝑙𝐶 | |
| 2 | nfcsb1v 3549 | . . 3 ⊢ Ⅎ𝑘⦋𝑙 / 𝑘⦌𝐶 | |
| 3 | csbeq1a 3542 | . . 3 ⊢ (𝑘 = 𝑙 → 𝐶 = ⦋𝑙 / 𝑘⦌𝐶) | |
| 4 | 1, 2, 3 | cbvixp 7925 | . 2 ⊢ X𝑘 ∈ 𝐴 𝐶 = X𝑙 ∈ 𝐴 ⦋𝑙 / 𝑘⦌𝐶 |
| 5 | ptcldmpt.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | ptcldmpt.j | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐽 ∈ Top) | |
| 7 | eqid 2622 | . . . 4 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐽) = (𝑘 ∈ 𝐴 ↦ 𝐽) | |
| 8 | 6, 7 | fmptd 6385 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐽):𝐴⟶Top) |
| 9 | nfv 1843 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑙 ∈ 𝐴) | |
| 10 | nfcv 2764 | . . . . . . 7 ⊢ Ⅎ𝑘Clsd | |
| 11 | nffvmpt1 6199 | . . . . . . 7 ⊢ Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙) | |
| 12 | 10, 11 | nffv 6198 | . . . . . 6 ⊢ Ⅎ𝑘(Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙)) |
| 13 | 2, 12 | nfel 2777 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙)) |
| 14 | 9, 13 | nfim 1825 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑙 ∈ 𝐴) → ⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙))) |
| 15 | eleq1 2689 | . . . . . 6 ⊢ (𝑘 = 𝑙 → (𝑘 ∈ 𝐴 ↔ 𝑙 ∈ 𝐴)) | |
| 16 | 15 | anbi2d 740 | . . . . 5 ⊢ (𝑘 = 𝑙 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑙 ∈ 𝐴))) |
| 17 | fveq2 6191 | . . . . . . 7 ⊢ (𝑘 = 𝑙 → ((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘) = ((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙)) | |
| 18 | 17 | fveq2d 6195 | . . . . . 6 ⊢ (𝑘 = 𝑙 → (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘)) = (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙))) |
| 19 | 3, 18 | eleq12d 2695 | . . . . 5 ⊢ (𝑘 = 𝑙 → (𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘)) ↔ ⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙)))) |
| 20 | 16, 19 | imbi12d 334 | . . . 4 ⊢ (𝑘 = 𝑙 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘))) ↔ ((𝜑 ∧ 𝑙 ∈ 𝐴) → ⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙))))) |
| 21 | ptcldmpt.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (Clsd‘𝐽)) | |
| 22 | simpr 477 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐴) | |
| 23 | 7 | fvmpt2 6291 | . . . . . . 7 ⊢ ((𝑘 ∈ 𝐴 ∧ 𝐽 ∈ Top) → ((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘) = 𝐽) |
| 24 | 22, 6, 23 | syl2anc 693 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘) = 𝐽) |
| 25 | 24 | fveq2d 6195 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘)) = (Clsd‘𝐽)) |
| 26 | 21, 25 | eleqtrrd 2704 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘))) |
| 27 | 14, 20, 26 | chvar 2262 | . . 3 ⊢ ((𝜑 ∧ 𝑙 ∈ 𝐴) → ⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙))) |
| 28 | 5, 8, 27 | ptcld 21416 | . 2 ⊢ (𝜑 → X𝑙 ∈ 𝐴 ⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘(∏t‘(𝑘 ∈ 𝐴 ↦ 𝐽)))) |
| 29 | 4, 28 | syl5eqel 2705 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝐴 𝐶 ∈ (Clsd‘(∏t‘(𝑘 ∈ 𝐴 ↦ 𝐽)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ⦋csb 3533 ↦ cmpt 4729 ‘cfv 5888 Xcixp 7908 ∏tcpt 16099 Topctop 20698 Clsdccld 20820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-ixp 7909 df-en 7956 df-fin 7959 df-fi 8317 df-topgen 16104 df-pt 16105 df-top 20699 df-bases 20750 df-cld 20823 |
| This theorem is referenced by: ptclsg 21418 kelac1 37633 |
| Copyright terms: Public domain | W3C validator |