Proof of Theorem pwfi2f1o
| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2622 |
. . . . 5
⊢ (𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) = (𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “
{1𝑜})) |
| 2 | 1 | pw2f1o2 37605 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “
{1𝑜})):(2𝑜 ↑𝑚
𝐴)–1-1-onto→𝒫 𝐴) |
| 3 | | f1of1 6136 |
. . . 4
⊢ ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “
{1𝑜})):(2𝑜 ↑𝑚
𝐴)–1-1-onto→𝒫 𝐴 → (𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “
{1𝑜})):(2𝑜 ↑𝑚
𝐴)–1-1→𝒫 𝐴) |
| 4 | 2, 3 | syl 17 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “
{1𝑜})):(2𝑜 ↑𝑚
𝐴)–1-1→𝒫 𝐴) |
| 5 | | pwfi2f1o.s |
. . . 4
⊢ 𝑆 = {𝑦 ∈ (2𝑜
↑𝑚 𝐴) ∣ 𝑦 finSupp ∅} |
| 6 | | ssrab2 3687 |
. . . 4
⊢ {𝑦 ∈ (2𝑜
↑𝑚 𝐴) ∣ 𝑦 finSupp ∅} ⊆
(2𝑜 ↑𝑚 𝐴) |
| 7 | 5, 6 | eqsstri 3635 |
. . 3
⊢ 𝑆 ⊆ (2𝑜
↑𝑚 𝐴) |
| 8 | | f1ores 6151 |
. . 3
⊢ (((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “
{1𝑜})):(2𝑜 ↑𝑚
𝐴)–1-1→𝒫 𝐴 ∧ 𝑆 ⊆ (2𝑜
↑𝑚 𝐴)) → ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) ↾
𝑆):𝑆–1-1-onto→((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
𝑆)) |
| 9 | 4, 7, 8 | sylancl 694 |
. 2
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) ↾
𝑆):𝑆–1-1-onto→((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
𝑆)) |
| 10 | | elmapfun 7881 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (2𝑜
↑𝑚 𝐴) → Fun 𝑦) |
| 11 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (2𝑜
↑𝑚 𝐴) → 𝑦 ∈ (2𝑜
↑𝑚 𝐴)) |
| 12 | | 0ex 4790 |
. . . . . . . . . . . . . 14
⊢ ∅
∈ V |
| 13 | 12 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (2𝑜
↑𝑚 𝐴) → ∅ ∈ V) |
| 14 | 10, 11, 13 | 3jca 1242 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (2𝑜
↑𝑚 𝐴) → (Fun 𝑦 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴) ∧ ∅ ∈ V)) |
| 15 | 14 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴)) → (Fun 𝑦 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴) ∧ ∅ ∈ V)) |
| 16 | | funisfsupp 8280 |
. . . . . . . . . . 11
⊢ ((Fun
𝑦 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴) ∧ ∅ ∈ V) → (𝑦 finSupp ∅ ↔ (𝑦 supp ∅) ∈
Fin)) |
| 17 | 15, 16 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴)) → (𝑦 finSupp ∅ ↔ (𝑦 supp ∅) ∈ Fin)) |
| 18 | 13 | anim2i 593 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴)) → (𝐴 ∈ 𝑉 ∧ ∅ ∈ V)) |
| 19 | | elmapi 7879 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (2𝑜
↑𝑚 𝐴) → 𝑦:𝐴⟶2𝑜) |
| 20 | 19 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴)) → 𝑦:𝐴⟶2𝑜) |
| 21 | | frnsuppeq 7307 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ ∅ ∈ V) → (𝑦:𝐴⟶2𝑜 → (𝑦 supp ∅) = (◡𝑦 “ (2𝑜 ∖
{∅})))) |
| 22 | 18, 20, 21 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴)) → (𝑦 supp ∅) = (◡𝑦 “ (2𝑜 ∖
{∅}))) |
| 23 | | df-2o 7561 |
. . . . . . . . . . . . . . . 16
⊢
2𝑜 = suc 1𝑜 |
| 24 | | df-suc 5729 |
. . . . . . . . . . . . . . . . 17
⊢ suc
1𝑜 = (1𝑜 ∪
{1𝑜}) |
| 25 | 24 | equncomi 3759 |
. . . . . . . . . . . . . . . 16
⊢ suc
1𝑜 = ({1𝑜} ∪
1𝑜) |
| 26 | 23, 25 | eqtri 2644 |
. . . . . . . . . . . . . . 15
⊢
2𝑜 = ({1𝑜} ∪
1𝑜) |
| 27 | | df1o2 7572 |
. . . . . . . . . . . . . . . 16
⊢
1𝑜 = {∅} |
| 28 | 27 | eqcomi 2631 |
. . . . . . . . . . . . . . 15
⊢ {∅}
= 1𝑜 |
| 29 | 26, 28 | difeq12i 3726 |
. . . . . . . . . . . . . 14
⊢
(2𝑜 ∖ {∅}) = (({1𝑜}
∪ 1𝑜) ∖ 1𝑜) |
| 30 | | difun2 4048 |
. . . . . . . . . . . . . . 15
⊢
(({1𝑜} ∪ 1𝑜) ∖
1𝑜) = ({1𝑜} ∖
1𝑜) |
| 31 | | incom 3805 |
. . . . . . . . . . . . . . . . 17
⊢
({1𝑜} ∩ 1𝑜) =
(1𝑜 ∩ {1𝑜}) |
| 32 | | 1on 7567 |
. . . . . . . . . . . . . . . . . . 19
⊢
1𝑜 ∈ On |
| 33 | 32 | onordi 5832 |
. . . . . . . . . . . . . . . . . 18
⊢ Ord
1𝑜 |
| 34 | | orddisj 5762 |
. . . . . . . . . . . . . . . . . 18
⊢ (Ord
1𝑜 → (1𝑜 ∩
{1𝑜}) = ∅) |
| 35 | 33, 34 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(1𝑜 ∩ {1𝑜}) =
∅ |
| 36 | 31, 35 | eqtri 2644 |
. . . . . . . . . . . . . . . 16
⊢
({1𝑜} ∩ 1𝑜) =
∅ |
| 37 | | disj3 4021 |
. . . . . . . . . . . . . . . 16
⊢
(({1𝑜} ∩ 1𝑜) = ∅ ↔
{1𝑜} = ({1𝑜} ∖
1𝑜)) |
| 38 | 36, 37 | mpbi 220 |
. . . . . . . . . . . . . . 15
⊢
{1𝑜} = ({1𝑜} ∖
1𝑜) |
| 39 | 30, 38 | eqtr4i 2647 |
. . . . . . . . . . . . . 14
⊢
(({1𝑜} ∪ 1𝑜) ∖
1𝑜) = {1𝑜} |
| 40 | 29, 39 | eqtri 2644 |
. . . . . . . . . . . . 13
⊢
(2𝑜 ∖ {∅}) =
{1𝑜} |
| 41 | 40 | imaeq2i 5464 |
. . . . . . . . . . . 12
⊢ (◡𝑦 “ (2𝑜 ∖
{∅})) = (◡𝑦 “
{1𝑜}) |
| 42 | 22, 41 | syl6eq 2672 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴)) → (𝑦 supp ∅) = (◡𝑦 “
{1𝑜})) |
| 43 | 42 | eleq1d 2686 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴)) → ((𝑦 supp ∅) ∈ Fin ↔ (◡𝑦 “ {1𝑜}) ∈
Fin)) |
| 44 | | cnvimass 5485 |
. . . . . . . . . . . 12
⊢ (◡𝑦 “ {1𝑜}) ⊆ dom
𝑦 |
| 45 | | fdm 6051 |
. . . . . . . . . . . . 13
⊢ (𝑦:𝐴⟶2𝑜 → dom
𝑦 = 𝐴) |
| 46 | 20, 45 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴)) → dom 𝑦 = 𝐴) |
| 47 | 44, 46 | syl5sseq 3653 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴)) → (◡𝑦 “ {1𝑜}) ⊆
𝐴) |
| 48 | 47 | biantrurd 529 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴)) → ((◡𝑦 “ {1𝑜}) ∈ Fin
↔ ((◡𝑦 “ {1𝑜}) ⊆
𝐴 ∧ (◡𝑦 “ {1𝑜}) ∈
Fin))) |
| 49 | 17, 43, 48 | 3bitrd 294 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴)) → (𝑦 finSupp ∅ ↔ ((◡𝑦 “ {1𝑜}) ⊆
𝐴 ∧ (◡𝑦 “ {1𝑜}) ∈
Fin))) |
| 50 | | elfpw 8268 |
. . . . . . . . 9
⊢ ((◡𝑦 “ {1𝑜}) ∈
(𝒫 𝐴 ∩ Fin)
↔ ((◡𝑦 “ {1𝑜}) ⊆
𝐴 ∧ (◡𝑦 “ {1𝑜}) ∈
Fin)) |
| 51 | 49, 50 | syl6bbr 278 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴)) → (𝑦 finSupp ∅ ↔ (◡𝑦 “ {1𝑜}) ∈
(𝒫 𝐴 ∩
Fin))) |
| 52 | 51 | rabbidva 3188 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → {𝑦 ∈ (2𝑜
↑𝑚 𝐴) ∣ 𝑦 finSupp ∅} = {𝑦 ∈ (2𝑜
↑𝑚 𝐴) ∣ (◡𝑦 “ {1𝑜}) ∈
(𝒫 𝐴 ∩
Fin)}) |
| 53 | | cnveq 5296 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ◡𝑥 = ◡𝑦) |
| 54 | 53 | imaeq1d 5465 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (◡𝑥 “ {1𝑜}) = (◡𝑦 “
{1𝑜})) |
| 55 | 54 | cbvmptv 4750 |
. . . . . . . 8
⊢ (𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) = (𝑦 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑦 “
{1𝑜})) |
| 56 | 55 | mptpreima 5628 |
. . . . . . 7
⊢ (◡(𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
(𝒫 𝐴 ∩ Fin)) =
{𝑦 ∈
(2𝑜 ↑𝑚 𝐴) ∣ (◡𝑦 “ {1𝑜}) ∈
(𝒫 𝐴 ∩
Fin)} |
| 57 | 52, 5, 56 | 3eqtr4g 2681 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → 𝑆 = (◡(𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
(𝒫 𝐴 ∩
Fin))) |
| 58 | 57 | imaeq2d 5466 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
𝑆) = ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
(◡(𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
(𝒫 𝐴 ∩
Fin)))) |
| 59 | | f1ofo 6144 |
. . . . . . 7
⊢ ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “
{1𝑜})):(2𝑜 ↑𝑚
𝐴)–1-1-onto→𝒫 𝐴 → (𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “
{1𝑜})):(2𝑜 ↑𝑚
𝐴)–onto→𝒫 𝐴) |
| 60 | 2, 59 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “
{1𝑜})):(2𝑜 ↑𝑚
𝐴)–onto→𝒫 𝐴) |
| 61 | | inss1 3833 |
. . . . . 6
⊢
(𝒫 𝐴 ∩
Fin) ⊆ 𝒫 𝐴 |
| 62 | | foimacnv 6154 |
. . . . . 6
⊢ (((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “
{1𝑜})):(2𝑜 ↑𝑚
𝐴)–onto→𝒫 𝐴 ∧ (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴) → ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
(◡(𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
(𝒫 𝐴 ∩ Fin))) =
(𝒫 𝐴 ∩
Fin)) |
| 63 | 60, 61, 62 | sylancl 694 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
(◡(𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
(𝒫 𝐴 ∩ Fin))) =
(𝒫 𝐴 ∩
Fin)) |
| 64 | 58, 63 | eqtrd 2656 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
𝑆) = (𝒫 𝐴 ∩ Fin)) |
| 65 | | f1oeq3 6129 |
. . . 4
⊢ (((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
𝑆) = (𝒫 𝐴 ∩ Fin) → (((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) ↾
𝑆):𝑆–1-1-onto→((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
𝑆) ↔ ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) ↾
𝑆):𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin))) |
| 66 | 64, 65 | syl 17 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) ↾
𝑆):𝑆–1-1-onto→((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
𝑆) ↔ ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) ↾
𝑆):𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin))) |
| 67 | | resmpt 5449 |
. . . . . 6
⊢ (𝑆 ⊆ (2𝑜
↑𝑚 𝐴) → ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) ↾
𝑆) = (𝑥 ∈ 𝑆 ↦ (◡𝑥 “
{1𝑜}))) |
| 68 | 7, 67 | ax-mp 5 |
. . . . 5
⊢ ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) ↾
𝑆) = (𝑥 ∈ 𝑆 ↦ (◡𝑥 “
{1𝑜})) |
| 69 | | pwfi2f1o.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ (◡𝑥 “
{1𝑜})) |
| 70 | 68, 69 | eqtr4i 2647 |
. . . 4
⊢ ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) ↾
𝑆) = 𝐹 |
| 71 | | f1oeq1 6127 |
. . . 4
⊢ (((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) ↾
𝑆) = 𝐹 → (((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) ↾
𝑆):𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin) ↔ 𝐹:𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin))) |
| 72 | 70, 71 | mp1i 13 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) ↾
𝑆):𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin) ↔ 𝐹:𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin))) |
| 73 | 66, 72 | bitrd 268 |
. 2
⊢ (𝐴 ∈ 𝑉 → (((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) ↾
𝑆):𝑆–1-1-onto→((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
𝑆) ↔ 𝐹:𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin))) |
| 74 | 9, 73 | mpbid 222 |
1
⊢ (𝐴 ∈ 𝑉 → 𝐹:𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin)) |