Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwfi2f1o Structured version   Visualization version   GIF version

Theorem pwfi2f1o 37666
Description: The pw2f1o 8065 bijection relates finitely supported indicator functions on a two-element set to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Revised by AV, 14-Jun-2020.)
Hypotheses
Ref Expression
pwfi2f1o.s 𝑆 = {𝑦 ∈ (2𝑜𝑚 𝐴) ∣ 𝑦 finSupp ∅}
pwfi2f1o.f 𝐹 = (𝑥𝑆 ↦ (𝑥 “ {1𝑜}))
Assertion
Ref Expression
pwfi2f1o (𝐴𝑉𝐹:𝑆1-1-onto→(𝒫 𝐴 ∩ Fin))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑆   𝑥,𝑉,𝑦
Allowed substitution hints:   𝑆(𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem pwfi2f1o
StepHypRef Expression
1 eqid 2622 . . . . 5 (𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) = (𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜}))
21pw2f1o2 37605 . . . 4 (𝐴𝑉 → (𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})):(2𝑜𝑚 𝐴)–1-1-onto→𝒫 𝐴)
3 f1of1 6136 . . . 4 ((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})):(2𝑜𝑚 𝐴)–1-1-onto→𝒫 𝐴 → (𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})):(2𝑜𝑚 𝐴)–1-1→𝒫 𝐴)
42, 3syl 17 . . 3 (𝐴𝑉 → (𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})):(2𝑜𝑚 𝐴)–1-1→𝒫 𝐴)
5 pwfi2f1o.s . . . 4 𝑆 = {𝑦 ∈ (2𝑜𝑚 𝐴) ∣ 𝑦 finSupp ∅}
6 ssrab2 3687 . . . 4 {𝑦 ∈ (2𝑜𝑚 𝐴) ∣ 𝑦 finSupp ∅} ⊆ (2𝑜𝑚 𝐴)
75, 6eqsstri 3635 . . 3 𝑆 ⊆ (2𝑜𝑚 𝐴)
8 f1ores 6151 . . 3 (((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})):(2𝑜𝑚 𝐴)–1-1→𝒫 𝐴𝑆 ⊆ (2𝑜𝑚 𝐴)) → ((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) ↾ 𝑆):𝑆1-1-onto→((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) “ 𝑆))
94, 7, 8sylancl 694 . 2 (𝐴𝑉 → ((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) ↾ 𝑆):𝑆1-1-onto→((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) “ 𝑆))
10 elmapfun 7881 . . . . . . . . . . . . 13 (𝑦 ∈ (2𝑜𝑚 𝐴) → Fun 𝑦)
11 id 22 . . . . . . . . . . . . 13 (𝑦 ∈ (2𝑜𝑚 𝐴) → 𝑦 ∈ (2𝑜𝑚 𝐴))
12 0ex 4790 . . . . . . . . . . . . . 14 ∅ ∈ V
1312a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ (2𝑜𝑚 𝐴) → ∅ ∈ V)
1410, 11, 133jca 1242 . . . . . . . . . . . 12 (𝑦 ∈ (2𝑜𝑚 𝐴) → (Fun 𝑦𝑦 ∈ (2𝑜𝑚 𝐴) ∧ ∅ ∈ V))
1514adantl 482 . . . . . . . . . . 11 ((𝐴𝑉𝑦 ∈ (2𝑜𝑚 𝐴)) → (Fun 𝑦𝑦 ∈ (2𝑜𝑚 𝐴) ∧ ∅ ∈ V))
16 funisfsupp 8280 . . . . . . . . . . 11 ((Fun 𝑦𝑦 ∈ (2𝑜𝑚 𝐴) ∧ ∅ ∈ V) → (𝑦 finSupp ∅ ↔ (𝑦 supp ∅) ∈ Fin))
1715, 16syl 17 . . . . . . . . . 10 ((𝐴𝑉𝑦 ∈ (2𝑜𝑚 𝐴)) → (𝑦 finSupp ∅ ↔ (𝑦 supp ∅) ∈ Fin))
1813anim2i 593 . . . . . . . . . . . . 13 ((𝐴𝑉𝑦 ∈ (2𝑜𝑚 𝐴)) → (𝐴𝑉 ∧ ∅ ∈ V))
19 elmapi 7879 . . . . . . . . . . . . . 14 (𝑦 ∈ (2𝑜𝑚 𝐴) → 𝑦:𝐴⟶2𝑜)
2019adantl 482 . . . . . . . . . . . . 13 ((𝐴𝑉𝑦 ∈ (2𝑜𝑚 𝐴)) → 𝑦:𝐴⟶2𝑜)
21 frnsuppeq 7307 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ ∅ ∈ V) → (𝑦:𝐴⟶2𝑜 → (𝑦 supp ∅) = (𝑦 “ (2𝑜 ∖ {∅}))))
2218, 20, 21sylc 65 . . . . . . . . . . . 12 ((𝐴𝑉𝑦 ∈ (2𝑜𝑚 𝐴)) → (𝑦 supp ∅) = (𝑦 “ (2𝑜 ∖ {∅})))
23 df-2o 7561 . . . . . . . . . . . . . . . 16 2𝑜 = suc 1𝑜
24 df-suc 5729 . . . . . . . . . . . . . . . . 17 suc 1𝑜 = (1𝑜 ∪ {1𝑜})
2524equncomi 3759 . . . . . . . . . . . . . . . 16 suc 1𝑜 = ({1𝑜} ∪ 1𝑜)
2623, 25eqtri 2644 . . . . . . . . . . . . . . 15 2𝑜 = ({1𝑜} ∪ 1𝑜)
27 df1o2 7572 . . . . . . . . . . . . . . . 16 1𝑜 = {∅}
2827eqcomi 2631 . . . . . . . . . . . . . . 15 {∅} = 1𝑜
2926, 28difeq12i 3726 . . . . . . . . . . . . . 14 (2𝑜 ∖ {∅}) = (({1𝑜} ∪ 1𝑜) ∖ 1𝑜)
30 difun2 4048 . . . . . . . . . . . . . . 15 (({1𝑜} ∪ 1𝑜) ∖ 1𝑜) = ({1𝑜} ∖ 1𝑜)
31 incom 3805 . . . . . . . . . . . . . . . . 17 ({1𝑜} ∩ 1𝑜) = (1𝑜 ∩ {1𝑜})
32 1on 7567 . . . . . . . . . . . . . . . . . . 19 1𝑜 ∈ On
3332onordi 5832 . . . . . . . . . . . . . . . . . 18 Ord 1𝑜
34 orddisj 5762 . . . . . . . . . . . . . . . . . 18 (Ord 1𝑜 → (1𝑜 ∩ {1𝑜}) = ∅)
3533, 34ax-mp 5 . . . . . . . . . . . . . . . . 17 (1𝑜 ∩ {1𝑜}) = ∅
3631, 35eqtri 2644 . . . . . . . . . . . . . . . 16 ({1𝑜} ∩ 1𝑜) = ∅
37 disj3 4021 . . . . . . . . . . . . . . . 16 (({1𝑜} ∩ 1𝑜) = ∅ ↔ {1𝑜} = ({1𝑜} ∖ 1𝑜))
3836, 37mpbi 220 . . . . . . . . . . . . . . 15 {1𝑜} = ({1𝑜} ∖ 1𝑜)
3930, 38eqtr4i 2647 . . . . . . . . . . . . . 14 (({1𝑜} ∪ 1𝑜) ∖ 1𝑜) = {1𝑜}
4029, 39eqtri 2644 . . . . . . . . . . . . 13 (2𝑜 ∖ {∅}) = {1𝑜}
4140imaeq2i 5464 . . . . . . . . . . . 12 (𝑦 “ (2𝑜 ∖ {∅})) = (𝑦 “ {1𝑜})
4222, 41syl6eq 2672 . . . . . . . . . . 11 ((𝐴𝑉𝑦 ∈ (2𝑜𝑚 𝐴)) → (𝑦 supp ∅) = (𝑦 “ {1𝑜}))
4342eleq1d 2686 . . . . . . . . . 10 ((𝐴𝑉𝑦 ∈ (2𝑜𝑚 𝐴)) → ((𝑦 supp ∅) ∈ Fin ↔ (𝑦 “ {1𝑜}) ∈ Fin))
44 cnvimass 5485 . . . . . . . . . . . 12 (𝑦 “ {1𝑜}) ⊆ dom 𝑦
45 fdm 6051 . . . . . . . . . . . . 13 (𝑦:𝐴⟶2𝑜 → dom 𝑦 = 𝐴)
4620, 45syl 17 . . . . . . . . . . . 12 ((𝐴𝑉𝑦 ∈ (2𝑜𝑚 𝐴)) → dom 𝑦 = 𝐴)
4744, 46syl5sseq 3653 . . . . . . . . . . 11 ((𝐴𝑉𝑦 ∈ (2𝑜𝑚 𝐴)) → (𝑦 “ {1𝑜}) ⊆ 𝐴)
4847biantrurd 529 . . . . . . . . . 10 ((𝐴𝑉𝑦 ∈ (2𝑜𝑚 𝐴)) → ((𝑦 “ {1𝑜}) ∈ Fin ↔ ((𝑦 “ {1𝑜}) ⊆ 𝐴 ∧ (𝑦 “ {1𝑜}) ∈ Fin)))
4917, 43, 483bitrd 294 . . . . . . . . 9 ((𝐴𝑉𝑦 ∈ (2𝑜𝑚 𝐴)) → (𝑦 finSupp ∅ ↔ ((𝑦 “ {1𝑜}) ⊆ 𝐴 ∧ (𝑦 “ {1𝑜}) ∈ Fin)))
50 elfpw 8268 . . . . . . . . 9 ((𝑦 “ {1𝑜}) ∈ (𝒫 𝐴 ∩ Fin) ↔ ((𝑦 “ {1𝑜}) ⊆ 𝐴 ∧ (𝑦 “ {1𝑜}) ∈ Fin))
5149, 50syl6bbr 278 . . . . . . . 8 ((𝐴𝑉𝑦 ∈ (2𝑜𝑚 𝐴)) → (𝑦 finSupp ∅ ↔ (𝑦 “ {1𝑜}) ∈ (𝒫 𝐴 ∩ Fin)))
5251rabbidva 3188 . . . . . . 7 (𝐴𝑉 → {𝑦 ∈ (2𝑜𝑚 𝐴) ∣ 𝑦 finSupp ∅} = {𝑦 ∈ (2𝑜𝑚 𝐴) ∣ (𝑦 “ {1𝑜}) ∈ (𝒫 𝐴 ∩ Fin)})
53 cnveq 5296 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
5453imaeq1d 5465 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 “ {1𝑜}) = (𝑦 “ {1𝑜}))
5554cbvmptv 4750 . . . . . . . 8 (𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) = (𝑦 ∈ (2𝑜𝑚 𝐴) ↦ (𝑦 “ {1𝑜}))
5655mptpreima 5628 . . . . . . 7 ((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) “ (𝒫 𝐴 ∩ Fin)) = {𝑦 ∈ (2𝑜𝑚 𝐴) ∣ (𝑦 “ {1𝑜}) ∈ (𝒫 𝐴 ∩ Fin)}
5752, 5, 563eqtr4g 2681 . . . . . 6 (𝐴𝑉𝑆 = ((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) “ (𝒫 𝐴 ∩ Fin)))
5857imaeq2d 5466 . . . . 5 (𝐴𝑉 → ((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) “ 𝑆) = ((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) “ ((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) “ (𝒫 𝐴 ∩ Fin))))
59 f1ofo 6144 . . . . . . 7 ((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})):(2𝑜𝑚 𝐴)–1-1-onto→𝒫 𝐴 → (𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})):(2𝑜𝑚 𝐴)–onto→𝒫 𝐴)
602, 59syl 17 . . . . . 6 (𝐴𝑉 → (𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})):(2𝑜𝑚 𝐴)–onto→𝒫 𝐴)
61 inss1 3833 . . . . . 6 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
62 foimacnv 6154 . . . . . 6 (((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})):(2𝑜𝑚 𝐴)–onto→𝒫 𝐴 ∧ (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴) → ((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) “ ((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) “ (𝒫 𝐴 ∩ Fin))) = (𝒫 𝐴 ∩ Fin))
6360, 61, 62sylancl 694 . . . . 5 (𝐴𝑉 → ((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) “ ((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) “ (𝒫 𝐴 ∩ Fin))) = (𝒫 𝐴 ∩ Fin))
6458, 63eqtrd 2656 . . . 4 (𝐴𝑉 → ((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) “ 𝑆) = (𝒫 𝐴 ∩ Fin))
65 f1oeq3 6129 . . . 4 (((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) “ 𝑆) = (𝒫 𝐴 ∩ Fin) → (((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) ↾ 𝑆):𝑆1-1-onto→((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) “ 𝑆) ↔ ((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) ↾ 𝑆):𝑆1-1-onto→(𝒫 𝐴 ∩ Fin)))
6664, 65syl 17 . . 3 (𝐴𝑉 → (((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) ↾ 𝑆):𝑆1-1-onto→((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) “ 𝑆) ↔ ((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) ↾ 𝑆):𝑆1-1-onto→(𝒫 𝐴 ∩ Fin)))
67 resmpt 5449 . . . . . 6 (𝑆 ⊆ (2𝑜𝑚 𝐴) → ((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) ↾ 𝑆) = (𝑥𝑆 ↦ (𝑥 “ {1𝑜})))
687, 67ax-mp 5 . . . . 5 ((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) ↾ 𝑆) = (𝑥𝑆 ↦ (𝑥 “ {1𝑜}))
69 pwfi2f1o.f . . . . 5 𝐹 = (𝑥𝑆 ↦ (𝑥 “ {1𝑜}))
7068, 69eqtr4i 2647 . . . 4 ((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) ↾ 𝑆) = 𝐹
71 f1oeq1 6127 . . . 4 (((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) ↾ 𝑆) = 𝐹 → (((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) ↾ 𝑆):𝑆1-1-onto→(𝒫 𝐴 ∩ Fin) ↔ 𝐹:𝑆1-1-onto→(𝒫 𝐴 ∩ Fin)))
7270, 71mp1i 13 . . 3 (𝐴𝑉 → (((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) ↾ 𝑆):𝑆1-1-onto→(𝒫 𝐴 ∩ Fin) ↔ 𝐹:𝑆1-1-onto→(𝒫 𝐴 ∩ Fin)))
7366, 72bitrd 268 . 2 (𝐴𝑉 → (((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) ↾ 𝑆):𝑆1-1-onto→((𝑥 ∈ (2𝑜𝑚 𝐴) ↦ (𝑥 “ {1𝑜})) “ 𝑆) ↔ 𝐹:𝑆1-1-onto→(𝒫 𝐴 ∩ Fin)))
749, 73mpbid 222 1 (𝐴𝑉𝐹:𝑆1-1-onto→(𝒫 𝐴 ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177   class class class wbr 4653  cmpt 4729  ccnv 5113  dom cdm 5114  cres 5116  cima 5117  Ord word 5722  suc csuc 5725  Fun wfun 5882  wf 5884  1-1wf1 5885  ontowfo 5886  1-1-ontowf1o 5887  (class class class)co 6650   supp csupp 7295  1𝑜c1o 7553  2𝑜c2o 7554  𝑚 cmap 7857  Fincfn 7955   finSupp cfsupp 8275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-supp 7296  df-1o 7560  df-2o 7561  df-map 7859  df-fsupp 8276
This theorem is referenced by:  pwfi2en  37667
  Copyright terms: Public domain W3C validator