| Step | Hyp | Ref
| Expression |
| 1 | | eluni 4439 |
. . 3
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∃𝑦(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ (𝑅1 “
On))) |
| 2 | | r1funlim 8629 |
. . . . . . . 8
⊢ (Fun
𝑅1 ∧ Lim dom 𝑅1) |
| 3 | 2 | simpli 474 |
. . . . . . 7
⊢ Fun
𝑅1 |
| 4 | | fvelima 6248 |
. . . . . . 7
⊢ ((Fun
𝑅1 ∧ 𝑦 ∈ (𝑅1 “ On))
→ ∃𝑥 ∈ On
(𝑅1‘𝑥) = 𝑦) |
| 5 | 3, 4 | mpan 706 |
. . . . . 6
⊢ (𝑦 ∈ (𝑅1
“ On) → ∃𝑥
∈ On (𝑅1‘𝑥) = 𝑦) |
| 6 | | eleq2 2690 |
. . . . . . . . 9
⊢
((𝑅1‘𝑥) = 𝑦 → (𝐴 ∈ (𝑅1‘𝑥) ↔ 𝐴 ∈ 𝑦)) |
| 7 | 6 | biimprcd 240 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑦 → ((𝑅1‘𝑥) = 𝑦 → 𝐴 ∈ (𝑅1‘𝑥))) |
| 8 | | r1tr 8639 |
. . . . . . . . . . . 12
⊢ Tr
(𝑅1‘𝑥) |
| 9 | | trss 4761 |
. . . . . . . . . . . 12
⊢ (Tr
(𝑅1‘𝑥) → (𝐴 ∈ (𝑅1‘𝑥) → 𝐴 ⊆ (𝑅1‘𝑥))) |
| 10 | 8, 9 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝐴 ∈
(𝑅1‘𝑥) → 𝐴 ⊆ (𝑅1‘𝑥)) |
| 11 | | elpwg 4166 |
. . . . . . . . . . 11
⊢ (𝐴 ∈
(𝑅1‘𝑥) → (𝐴 ∈ 𝒫
(𝑅1‘𝑥) ↔ 𝐴 ⊆ (𝑅1‘𝑥))) |
| 12 | 10, 11 | mpbird 247 |
. . . . . . . . . 10
⊢ (𝐴 ∈
(𝑅1‘𝑥) → 𝐴 ∈ 𝒫
(𝑅1‘𝑥)) |
| 13 | | elfvdm 6220 |
. . . . . . . . . . 11
⊢ (𝐴 ∈
(𝑅1‘𝑥) → 𝑥 ∈ dom
𝑅1) |
| 14 | | r1sucg 8632 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ dom
𝑅1 → (𝑅1‘suc 𝑥) = 𝒫
(𝑅1‘𝑥)) |
| 15 | 13, 14 | syl 17 |
. . . . . . . . . 10
⊢ (𝐴 ∈
(𝑅1‘𝑥) → (𝑅1‘suc
𝑥) = 𝒫
(𝑅1‘𝑥)) |
| 16 | 12, 15 | eleqtrrd 2704 |
. . . . . . . . 9
⊢ (𝐴 ∈
(𝑅1‘𝑥) → 𝐴 ∈ (𝑅1‘suc
𝑥)) |
| 17 | 16 | a1i 11 |
. . . . . . . 8
⊢ (𝑥 ∈ On → (𝐴 ∈
(𝑅1‘𝑥) → 𝐴 ∈ (𝑅1‘suc
𝑥))) |
| 18 | 7, 17 | syl9 77 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑦 → (𝑥 ∈ On →
((𝑅1‘𝑥) = 𝑦 → 𝐴 ∈ (𝑅1‘suc
𝑥)))) |
| 19 | 18 | reximdvai 3015 |
. . . . . 6
⊢ (𝐴 ∈ 𝑦 → (∃𝑥 ∈ On (𝑅1‘𝑥) = 𝑦 → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc
𝑥))) |
| 20 | 5, 19 | syl5 34 |
. . . . 5
⊢ (𝐴 ∈ 𝑦 → (𝑦 ∈ (𝑅1 “ On)
→ ∃𝑥 ∈ On
𝐴 ∈
(𝑅1‘suc 𝑥))) |
| 21 | 20 | imp 445 |
. . . 4
⊢ ((𝐴 ∈ 𝑦 ∧ 𝑦 ∈ (𝑅1 “ On))
→ ∃𝑥 ∈ On
𝐴 ∈
(𝑅1‘suc 𝑥)) |
| 22 | 21 | exlimiv 1858 |
. . 3
⊢
(∃𝑦(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ (𝑅1 “ On))
→ ∃𝑥 ∈ On
𝐴 ∈
(𝑅1‘suc 𝑥)) |
| 23 | 1, 22 | sylbi 207 |
. 2
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc
𝑥)) |
| 24 | | elfvdm 6220 |
. . . . . 6
⊢ (𝐴 ∈
(𝑅1‘suc 𝑥) → suc 𝑥 ∈ dom
𝑅1) |
| 25 | | fvelrn 6352 |
. . . . . 6
⊢ ((Fun
𝑅1 ∧ suc 𝑥 ∈ dom 𝑅1) →
(𝑅1‘suc 𝑥) ∈ ran
𝑅1) |
| 26 | 3, 24, 25 | sylancr 695 |
. . . . 5
⊢ (𝐴 ∈
(𝑅1‘suc 𝑥) → (𝑅1‘suc
𝑥) ∈ ran
𝑅1) |
| 27 | | df-ima 5127 |
. . . . . 6
⊢
(𝑅1 “ On) = ran (𝑅1 ↾
On) |
| 28 | | funrel 5905 |
. . . . . . . . 9
⊢ (Fun
𝑅1 → Rel 𝑅1) |
| 29 | 3, 28 | ax-mp 5 |
. . . . . . . 8
⊢ Rel
𝑅1 |
| 30 | 2 | simpri 478 |
. . . . . . . . 9
⊢ Lim dom
𝑅1 |
| 31 | | limord 5784 |
. . . . . . . . 9
⊢ (Lim dom
𝑅1 → Ord dom 𝑅1) |
| 32 | | ordsson 6989 |
. . . . . . . . 9
⊢ (Ord dom
𝑅1 → dom 𝑅1 ⊆
On) |
| 33 | 30, 31, 32 | mp2b 10 |
. . . . . . . 8
⊢ dom
𝑅1 ⊆ On |
| 34 | | relssres 5437 |
. . . . . . . 8
⊢ ((Rel
𝑅1 ∧ dom 𝑅1 ⊆ On) →
(𝑅1 ↾ On) = 𝑅1) |
| 35 | 29, 33, 34 | mp2an 708 |
. . . . . . 7
⊢
(𝑅1 ↾ On) =
𝑅1 |
| 36 | 35 | rneqi 5352 |
. . . . . 6
⊢ ran
(𝑅1 ↾ On) = ran 𝑅1 |
| 37 | 27, 36 | eqtri 2644 |
. . . . 5
⊢
(𝑅1 “ On) = ran
𝑅1 |
| 38 | 26, 37 | syl6eleqr 2712 |
. . . 4
⊢ (𝐴 ∈
(𝑅1‘suc 𝑥) → (𝑅1‘suc
𝑥) ∈
(𝑅1 “ On)) |
| 39 | | elunii 4441 |
. . . 4
⊢ ((𝐴 ∈
(𝑅1‘suc 𝑥) ∧ (𝑅1‘suc
𝑥) ∈
(𝑅1 “ On)) → 𝐴 ∈ ∪
(𝑅1 “ On)) |
| 40 | 38, 39 | mpdan 702 |
. . 3
⊢ (𝐴 ∈
(𝑅1‘suc 𝑥) → 𝐴 ∈ ∪
(𝑅1 “ On)) |
| 41 | 40 | rexlimivw 3029 |
. 2
⊢
(∃𝑥 ∈ On
𝐴 ∈
(𝑅1‘suc 𝑥) → 𝐴 ∈ ∪
(𝑅1 “ On)) |
| 42 | 23, 41 | impbii 199 |
1
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc
𝑥)) |