MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcnp Structured version   Visualization version   GIF version

Theorem rlimcnp 24692
Description: Relate a limit of a real-valued sequence at infinity to the continuity of the function 𝑆(𝑦) = 𝑅(1 / 𝑦) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypotheses
Ref Expression
rlimcnp.a (𝜑𝐴 ⊆ (0[,)+∞))
rlimcnp.0 (𝜑 → 0 ∈ 𝐴)
rlimcnp.b (𝜑𝐵 ⊆ ℝ+)
rlimcnp.r ((𝜑𝑥𝐴) → 𝑅 ∈ ℂ)
rlimcnp.d ((𝜑𝑥 ∈ ℝ+) → (𝑥𝐴 ↔ (1 / 𝑥) ∈ 𝐵))
rlimcnp.c (𝑥 = 0 → 𝑅 = 𝐶)
rlimcnp.s (𝑥 = (1 / 𝑦) → 𝑅 = 𝑆)
rlimcnp.j 𝐽 = (TopOpen‘ℂfld)
rlimcnp.k 𝐾 = (𝐽t 𝐴)
Assertion
Ref Expression
rlimcnp (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘0)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦   𝑦,𝑅   𝑥,𝑆
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem rlimcnp
Dummy variables 𝑤 𝑟 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpreccl 11857 . . . . . . . . 9 (𝑟 ∈ ℝ+ → (1 / 𝑟) ∈ ℝ+)
21adantl 482 . . . . . . . 8 ((𝜑𝑟 ∈ ℝ+) → (1 / 𝑟) ∈ ℝ+)
3 rpreccl 11857 . . . . . . . . . 10 (𝑡 ∈ ℝ+ → (1 / 𝑡) ∈ ℝ+)
43adantl 482 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → (1 / 𝑡) ∈ ℝ+)
5 rpcnne0 11850 . . . . . . . . . . . 12 (𝑡 ∈ ℝ+ → (𝑡 ∈ ℂ ∧ 𝑡 ≠ 0))
65adantl 482 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → (𝑡 ∈ ℂ ∧ 𝑡 ≠ 0))
7 recrec 10722 . . . . . . . . . . 11 ((𝑡 ∈ ℂ ∧ 𝑡 ≠ 0) → (1 / (1 / 𝑡)) = 𝑡)
86, 7syl 17 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → (1 / (1 / 𝑡)) = 𝑡)
98eqcomd 2628 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 𝑡 = (1 / (1 / 𝑡)))
10 oveq2 6658 . . . . . . . . . . 11 (𝑟 = (1 / 𝑡) → (1 / 𝑟) = (1 / (1 / 𝑡)))
1110eqeq2d 2632 . . . . . . . . . 10 (𝑟 = (1 / 𝑡) → (𝑡 = (1 / 𝑟) ↔ 𝑡 = (1 / (1 / 𝑡))))
1211rspcev 3309 . . . . . . . . 9 (((1 / 𝑡) ∈ ℝ+𝑡 = (1 / (1 / 𝑡))) → ∃𝑟 ∈ ℝ+ 𝑡 = (1 / 𝑟))
134, 9, 12syl2anc 693 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → ∃𝑟 ∈ ℝ+ 𝑡 = (1 / 𝑟))
14 simpr 477 . . . . . . . . . . 11 ((𝜑𝑡 = (1 / 𝑟)) → 𝑡 = (1 / 𝑟))
1514breq1d 4663 . . . . . . . . . 10 ((𝜑𝑡 = (1 / 𝑟)) → (𝑡 < 𝑦 ↔ (1 / 𝑟) < 𝑦))
1615imbi1d 331 . . . . . . . . 9 ((𝜑𝑡 = (1 / 𝑟)) → ((𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
1716ralbidv 2986 . . . . . . . 8 ((𝜑𝑡 = (1 / 𝑟)) → (∀𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∀𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
182, 13, 17rexxfrd 4881 . . . . . . 7 (𝜑 → (∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∃𝑟 ∈ ℝ+𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
1918adantr 481 . . . . . 6 ((𝜑𝑧 ∈ ℝ+) → (∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∃𝑟 ∈ ℝ+𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
20 simplr 792 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝐵) → 𝑟 ∈ ℝ+)
21 rlimcnp.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ⊆ ℝ+)
2221sselda 3603 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → 𝑦 ∈ ℝ+)
2322adantlr 751 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝐵) → 𝑦 ∈ ℝ+)
24 elrp 11834 . . . . . . . . . . . . . 14 (𝑟 ∈ ℝ+ ↔ (𝑟 ∈ ℝ ∧ 0 < 𝑟))
25 elrp 11834 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+ ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦))
26 ltrec1 10910 . . . . . . . . . . . . . 14 (((𝑟 ∈ ℝ ∧ 0 < 𝑟) ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → ((1 / 𝑟) < 𝑦 ↔ (1 / 𝑦) < 𝑟))
2724, 25, 26syl2anb 496 . . . . . . . . . . . . 13 ((𝑟 ∈ ℝ+𝑦 ∈ ℝ+) → ((1 / 𝑟) < 𝑦 ↔ (1 / 𝑦) < 𝑟))
2820, 23, 27syl2anc 693 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝐵) → ((1 / 𝑟) < 𝑦 ↔ (1 / 𝑦) < 𝑟))
2928imbi1d 331 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝐵) → (((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
3029ralbidva 2985 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → (∀𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∀𝑦𝐵 ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
3130adantlr 751 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∀𝑦𝐵 ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
32 rpcn 11841 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
33 rpne0 11848 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ+𝑦 ≠ 0)
3432, 33recrecd 10798 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+ → (1 / (1 / 𝑦)) = 𝑦)
3522, 34syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → (1 / (1 / 𝑦)) = 𝑦)
36 simpr 477 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → 𝑦𝐵)
3735, 36eqeltrd 2701 . . . . . . . . . . . . 13 ((𝜑𝑦𝐵) → (1 / (1 / 𝑦)) ∈ 𝐵)
38 rpreccl 11857 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ+)
3922, 38syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → (1 / 𝑦) ∈ ℝ+)
40 rlimcnp.d . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝐴 ↔ (1 / 𝑥) ∈ 𝐵))
4140ralrimiva 2966 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥 ∈ ℝ+ (𝑥𝐴 ↔ (1 / 𝑥) ∈ 𝐵))
4241adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → ∀𝑥 ∈ ℝ+ (𝑥𝐴 ↔ (1 / 𝑥) ∈ 𝐵))
43 eleq1 2689 . . . . . . . . . . . . . . . 16 (𝑥 = (1 / 𝑦) → (𝑥𝐴 ↔ (1 / 𝑦) ∈ 𝐴))
44 oveq2 6658 . . . . . . . . . . . . . . . . 17 (𝑥 = (1 / 𝑦) → (1 / 𝑥) = (1 / (1 / 𝑦)))
4544eleq1d 2686 . . . . . . . . . . . . . . . 16 (𝑥 = (1 / 𝑦) → ((1 / 𝑥) ∈ 𝐵 ↔ (1 / (1 / 𝑦)) ∈ 𝐵))
4643, 45bibi12d 335 . . . . . . . . . . . . . . 15 (𝑥 = (1 / 𝑦) → ((𝑥𝐴 ↔ (1 / 𝑥) ∈ 𝐵) ↔ ((1 / 𝑦) ∈ 𝐴 ↔ (1 / (1 / 𝑦)) ∈ 𝐵)))
4746rspcv 3305 . . . . . . . . . . . . . 14 ((1 / 𝑦) ∈ ℝ+ → (∀𝑥 ∈ ℝ+ (𝑥𝐴 ↔ (1 / 𝑥) ∈ 𝐵) → ((1 / 𝑦) ∈ 𝐴 ↔ (1 / (1 / 𝑦)) ∈ 𝐵)))
4839, 42, 47sylc 65 . . . . . . . . . . . . 13 ((𝜑𝑦𝐵) → ((1 / 𝑦) ∈ 𝐴 ↔ (1 / (1 / 𝑦)) ∈ 𝐵))
4937, 48mpbird 247 . . . . . . . . . . . 12 ((𝜑𝑦𝐵) → (1 / 𝑦) ∈ 𝐴)
5039rpne0d 11877 . . . . . . . . . . . 12 ((𝜑𝑦𝐵) → (1 / 𝑦) ≠ 0)
51 eldifsn 4317 . . . . . . . . . . . 12 ((1 / 𝑦) ∈ (𝐴 ∖ {0}) ↔ ((1 / 𝑦) ∈ 𝐴 ∧ (1 / 𝑦) ≠ 0))
5249, 50, 51sylanbrc 698 . . . . . . . . . . 11 ((𝜑𝑦𝐵) → (1 / 𝑦) ∈ (𝐴 ∖ {0}))
53 eldifi 3732 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴 ∖ {0}) → 𝑥𝐴)
5453adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 𝑥𝐴)
55 rge0ssre 12280 . . . . . . . . . . . . . . . 16 (0[,)+∞) ⊆ ℝ
56 rlimcnp.a . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ (0[,)+∞))
5756ssdifssd 3748 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∖ {0}) ⊆ (0[,)+∞))
5857sselda 3603 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 𝑥 ∈ (0[,)+∞))
5955, 58sseldi 3601 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 𝑥 ∈ ℝ)
60 0re 10040 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
61 pnfxr 10092 . . . . . . . . . . . . . . . . . . 19 +∞ ∈ ℝ*
62 elico2 12237 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < +∞)))
6360, 61, 62mp2an 708 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < +∞))
6463simp2bi 1077 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (0[,)+∞) → 0 ≤ 𝑥)
6558, 64syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 0 ≤ 𝑥)
66 eldifsni 4320 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴 ∖ {0}) → 𝑥 ≠ 0)
6766adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 𝑥 ≠ 0)
6859, 65, 67ne0gt0d 10174 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 0 < 𝑥)
6959, 68elrpd 11869 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 𝑥 ∈ ℝ+)
7069, 40syldan 487 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → (𝑥𝐴 ↔ (1 / 𝑥) ∈ 𝐵))
7154, 70mpbid 222 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → (1 / 𝑥) ∈ 𝐵)
72 rpcn 11841 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
73 rpne0 11848 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ≠ 0)
7472, 73recrecd 10798 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → (1 / (1 / 𝑥)) = 𝑥)
7569, 74syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → (1 / (1 / 𝑥)) = 𝑥)
7675eqcomd 2628 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → 𝑥 = (1 / (1 / 𝑥)))
77 oveq2 6658 . . . . . . . . . . . . . 14 (𝑦 = (1 / 𝑥) → (1 / 𝑦) = (1 / (1 / 𝑥)))
7877eqeq2d 2632 . . . . . . . . . . . . 13 (𝑦 = (1 / 𝑥) → (𝑥 = (1 / 𝑦) ↔ 𝑥 = (1 / (1 / 𝑥))))
7978rspcev 3309 . . . . . . . . . . . 12 (((1 / 𝑥) ∈ 𝐵𝑥 = (1 / (1 / 𝑥))) → ∃𝑦𝐵 𝑥 = (1 / 𝑦))
8071, 76, 79syl2anc 693 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴 ∖ {0})) → ∃𝑦𝐵 𝑥 = (1 / 𝑦))
81 breq1 4656 . . . . . . . . . . . . 13 (𝑥 = (1 / 𝑦) → (𝑥 < 𝑟 ↔ (1 / 𝑦) < 𝑟))
82 rlimcnp.s . . . . . . . . . . . . . . . 16 (𝑥 = (1 / 𝑦) → 𝑅 = 𝑆)
8382oveq1d 6665 . . . . . . . . . . . . . . 15 (𝑥 = (1 / 𝑦) → (𝑅𝐶) = (𝑆𝐶))
8483fveq2d 6195 . . . . . . . . . . . . . 14 (𝑥 = (1 / 𝑦) → (abs‘(𝑅𝐶)) = (abs‘(𝑆𝐶)))
8584breq1d 4663 . . . . . . . . . . . . 13 (𝑥 = (1 / 𝑦) → ((abs‘(𝑅𝐶)) < 𝑧 ↔ (abs‘(𝑆𝐶)) < 𝑧))
8681, 85imbi12d 334 . . . . . . . . . . . 12 (𝑥 = (1 / 𝑦) → ((𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
8786adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 = (1 / 𝑦)) → ((𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
8852, 80, 87ralxfrd 4879 . . . . . . . . . 10 (𝜑 → (∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ ∀𝑦𝐵 ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
8988ad2antrr 762 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ ∀𝑦𝐵 ((1 / 𝑦) < 𝑟 → (abs‘(𝑆𝐶)) < 𝑧)))
9031, 89bitr4d 271 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
91 elsni 4194 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {0} → 𝑥 = 0)
9291adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → 𝑥 = 0)
93 rlimcnp.c . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → 𝑅 = 𝐶)
9492, 93syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → 𝑅 = 𝐶)
9594oveq1d 6665 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (𝑅𝐶) = (𝐶𝐶))
96 rlimcnp.0 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ∈ 𝐴)
97 rlimcnp.r . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → 𝑅 ∈ ℂ)
9897ralrimiva 2966 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥𝐴 𝑅 ∈ ℂ)
9993eleq1d 2686 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → (𝑅 ∈ ℂ ↔ 𝐶 ∈ ℂ))
10099rspcv 3305 . . . . . . . . . . . . . . . . . . 19 (0 ∈ 𝐴 → (∀𝑥𝐴 𝑅 ∈ ℂ → 𝐶 ∈ ℂ))
10196, 98, 100sylc 65 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ ℂ)
102101subidd 10380 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐶𝐶) = 0)
103102ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (𝐶𝐶) = 0)
10495, 103eqtrd 2656 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (𝑅𝐶) = 0)
105104abs00bd 14031 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (abs‘(𝑅𝐶)) = 0)
106 rpgt0 11844 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ+ → 0 < 𝑧)
107106ad2antlr 763 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → 0 < 𝑧)
108105, 107eqbrtrd 4675 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (abs‘(𝑅𝐶)) < 𝑧)
109108a1d 25 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑥 ∈ {0}) → (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧))
110109ralrimiva 2966 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℝ+) → ∀𝑥 ∈ {0} (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧))
111110adantr 481 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → ∀𝑥 ∈ {0} (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧))
112111biantrud 528 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ (∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ∧ ∀𝑥 ∈ {0} (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧))))
113 ralunb 3794 . . . . . . . . 9 (∀𝑥 ∈ ((𝐴 ∖ {0}) ∪ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ (∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ∧ ∀𝑥 ∈ {0} (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
114112, 113syl6bbr 278 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑥 ∈ (𝐴 ∖ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ ∀𝑥 ∈ ((𝐴 ∖ {0}) ∪ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
115 undif1 4043 . . . . . . . . . 10 ((𝐴 ∖ {0}) ∪ {0}) = (𝐴 ∪ {0})
11696ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → 0 ∈ 𝐴)
117116snssd 4340 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → {0} ⊆ 𝐴)
118 ssequn2 3786 . . . . . . . . . . 11 ({0} ⊆ 𝐴 ↔ (𝐴 ∪ {0}) = 𝐴)
119117, 118sylib 208 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (𝐴 ∪ {0}) = 𝐴)
120115, 119syl5eq 2668 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → ((𝐴 ∖ {0}) ∪ {0}) = 𝐴)
121120raleqdv 3144 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑥 ∈ ((𝐴 ∖ {0}) ∪ {0})(𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧) ↔ ∀𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
12290, 114, 1213bitrd 294 . . . . . . 7 (((𝜑𝑧 ∈ ℝ+) ∧ 𝑟 ∈ ℝ+) → (∀𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∀𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
123122rexbidva 3049 . . . . . 6 ((𝜑𝑧 ∈ ℝ+) → (∃𝑟 ∈ ℝ+𝑦𝐵 ((1 / 𝑟) < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∃𝑟 ∈ ℝ+𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
12419, 123bitrd 268 . . . . 5 ((𝜑𝑧 ∈ ℝ+) → (∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∃𝑟 ∈ ℝ+𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
125124ralbidva 2985 . . . 4 (𝜑 → (∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
126 nfv 1843 . . . . . . . . 9 𝑥(𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟
127 nffvmpt1 6199 . . . . . . . . . . 11 𝑥((𝑥𝐴𝑅)‘𝑤)
128 nfcv 2764 . . . . . . . . . . 11 𝑥(abs ∘ − )
129 nffvmpt1 6199 . . . . . . . . . . 11 𝑥((𝑥𝐴𝑅)‘0)
130127, 128, 129nfov 6676 . . . . . . . . . 10 𝑥(((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0))
131 nfcv 2764 . . . . . . . . . 10 𝑥 <
132 nfcv 2764 . . . . . . . . . 10 𝑥𝑧
133130, 131, 132nfbr 4699 . . . . . . . . 9 𝑥(((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧
134126, 133nfim 1825 . . . . . . . 8 𝑥((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧)
135 nfv 1843 . . . . . . . 8 𝑤((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧)
136 oveq1 6657 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) = (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0))
137136breq1d 4663 . . . . . . . . 9 (𝑤 = 𝑥 → ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 ↔ (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟))
138 fveq2 6191 . . . . . . . . . . 11 (𝑤 = 𝑥 → ((𝑥𝐴𝑅)‘𝑤) = ((𝑥𝐴𝑅)‘𝑥))
139138oveq1d 6665 . . . . . . . . . 10 (𝑤 = 𝑥 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) = (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)))
140139breq1d 4663 . . . . . . . . 9 (𝑤 = 𝑥 → ((((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧 ↔ (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧))
141137, 140imbi12d 334 . . . . . . . 8 (𝑤 = 𝑥 → (((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧)))
142134, 135, 141cbvral 3167 . . . . . . 7 (∀𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ∀𝑥𝐴 ((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧))
143 simpr 477 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝑥𝐴)
14496adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 0 ∈ 𝐴)
145143, 144ovresd 6801 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) = (𝑥(abs ∘ − )0))
14656, 55syl6ss 3615 . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
147 ax-resscn 9993 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
148146, 147syl6ss 3615 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ ℂ)
149148sselda 3603 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝑥 ∈ ℂ)
150 0cnd 10033 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 0 ∈ ℂ)
151 eqid 2622 . . . . . . . . . . . . . 14 (abs ∘ − ) = (abs ∘ − )
152151cnmetdval 22574 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑥(abs ∘ − )0) = (abs‘(𝑥 − 0)))
153149, 150, 152syl2anc 693 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑥(abs ∘ − )0) = (abs‘(𝑥 − 0)))
154149subid1d 10381 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝑥 − 0) = 𝑥)
155154fveq2d 6195 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (abs‘(𝑥 − 0)) = (abs‘𝑥))
156145, 153, 1553eqtrd 2660 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) = (abs‘𝑥))
157146sselda 3603 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
15856sselda 3603 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝑥 ∈ (0[,)+∞))
159158, 64syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 0 ≤ 𝑥)
160157, 159absidd 14161 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (abs‘𝑥) = 𝑥)
161156, 160eqtrd 2656 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) = 𝑥)
162161breq1d 4663 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟𝑥 < 𝑟))
163 eqid 2622 . . . . . . . . . . . . . 14 (𝑥𝐴𝑅) = (𝑥𝐴𝑅)
164163fvmpt2 6291 . . . . . . . . . . . . 13 ((𝑥𝐴𝑅 ∈ ℂ) → ((𝑥𝐴𝑅)‘𝑥) = 𝑅)
165143, 97, 164syl2anc 693 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝑥𝐴𝑅)‘𝑥) = 𝑅)
166101adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
16793, 163fvmptg 6280 . . . . . . . . . . . . 13 ((0 ∈ 𝐴𝐶 ∈ ℂ) → ((𝑥𝐴𝑅)‘0) = 𝐶)
168144, 166, 167syl2anc 693 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝑥𝐴𝑅)‘0) = 𝐶)
169165, 168oveq12d 6668 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) = (𝑅(abs ∘ − )𝐶))
170151cnmetdval 22574 . . . . . . . . . . . 12 ((𝑅 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑅(abs ∘ − )𝐶) = (abs‘(𝑅𝐶)))
17197, 166, 170syl2anc 693 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑅(abs ∘ − )𝐶) = (abs‘(𝑅𝐶)))
172169, 171eqtrd 2656 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) = (abs‘(𝑅𝐶)))
173172breq1d 4663 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧 ↔ (abs‘(𝑅𝐶)) < 𝑧))
174162, 173imbi12d 334 . . . . . . . 8 ((𝜑𝑥𝐴) → (((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
175174ralbidva 2985 . . . . . . 7 (𝜑 → (∀𝑥𝐴 ((𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑥)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ∀𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
176142, 175syl5bb 272 . . . . . 6 (𝜑 → (∀𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ∀𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
177176rexbidv 3052 . . . . 5 (𝜑 → (∃𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ∃𝑟 ∈ ℝ+𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
178177ralbidv 2986 . . . 4 (𝜑 → (∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑥𝐴 (𝑥 < 𝑟 → (abs‘(𝑅𝐶)) < 𝑧)))
17997, 163fmptd 6385 . . . . 5 (𝜑 → (𝑥𝐴𝑅):𝐴⟶ℂ)
180179biantrurd 529 . . . 4 (𝜑 → (∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧))))
181125, 178, 1803bitr2d 296 . . 3 (𝜑 → (∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧))))
18298adantr 481 . . . . . . . 8 ((𝜑𝑦𝐵) → ∀𝑥𝐴 𝑅 ∈ ℂ)
18382eleq1d 2686 . . . . . . . . 9 (𝑥 = (1 / 𝑦) → (𝑅 ∈ ℂ ↔ 𝑆 ∈ ℂ))
184183rspcv 3305 . . . . . . . 8 ((1 / 𝑦) ∈ 𝐴 → (∀𝑥𝐴 𝑅 ∈ ℂ → 𝑆 ∈ ℂ))
18549, 182, 184sylc 65 . . . . . . 7 ((𝜑𝑦𝐵) → 𝑆 ∈ ℂ)
186185ralrimiva 2966 . . . . . 6 (𝜑 → ∀𝑦𝐵 𝑆 ∈ ℂ)
187 rpssre 11843 . . . . . . 7 + ⊆ ℝ
18821, 187syl6ss 3615 . . . . . 6 (𝜑𝐵 ⊆ ℝ)
189 1red 10055 . . . . . 6 (𝜑 → 1 ∈ ℝ)
190186, 188, 101, 189rlim3 14229 . . . . 5 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ ∀𝑧 ∈ ℝ+𝑡 ∈ (1[,)+∞)∀𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
191 0xr 10086 . . . . . . . . . 10 0 ∈ ℝ*
192 0lt1 10550 . . . . . . . . . 10 0 < 1
193 df-ioo 12179 . . . . . . . . . . 11 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
194 df-ico 12181 . . . . . . . . . . 11 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
195 xrltletr 11988 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*𝑤 ∈ ℝ*) → ((0 < 1 ∧ 1 ≤ 𝑤) → 0 < 𝑤))
196193, 194, 195ixxss1 12193 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 0 < 1) → (1[,)+∞) ⊆ (0(,)+∞))
197191, 192, 196mp2an 708 . . . . . . . . 9 (1[,)+∞) ⊆ (0(,)+∞)
198 ioorp 12251 . . . . . . . . 9 (0(,)+∞) = ℝ+
199197, 198sseqtri 3637 . . . . . . . 8 (1[,)+∞) ⊆ ℝ+
200 ssrexv 3667 . . . . . . . 8 ((1[,)+∞) ⊆ ℝ+ → (∃𝑡 ∈ (1[,)+∞)∀𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
201199, 200ax-mp 5 . . . . . . 7 (∃𝑡 ∈ (1[,)+∞)∀𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧))
202 simplr 792 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑦𝐵) → 𝑡 ∈ ℝ+)
203187, 202sseldi 3601 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑦𝐵) → 𝑡 ∈ ℝ)
204188adantr 481 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℝ+) → 𝐵 ⊆ ℝ)
205204sselda 3603 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑦𝐵) → 𝑦 ∈ ℝ)
206 ltle 10126 . . . . . . . . . . 11 ((𝑡 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑡 < 𝑦𝑡𝑦))
207203, 205, 206syl2anc 693 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑦𝐵) → (𝑡 < 𝑦𝑡𝑦))
208207imim1d 82 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑦𝐵) → ((𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
209208ralimdva 2962 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (∀𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∀𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
210209reximdva 3017 . . . . . . 7 (𝜑 → (∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
211201, 210syl5 34 . . . . . 6 (𝜑 → (∃𝑡 ∈ (1[,)+∞)∀𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
212211ralimdv 2963 . . . . 5 (𝜑 → (∀𝑧 ∈ ℝ+𝑡 ∈ (1[,)+∞)∀𝑦𝐵 (𝑡𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
213190, 212sylbid 230 . . . 4 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 → ∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
214 ssrexv 3667 . . . . . . 7 (ℝ+ ⊆ ℝ → (∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ ∀𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
215187, 214ax-mp 5 . . . . . 6 (∃𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∃𝑡 ∈ ℝ ∀𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧))
216215ralimi 2952 . . . . 5 (∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → ∀𝑧 ∈ ℝ+𝑡 ∈ ℝ ∀𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧))
217186, 188, 101rlim2lt 14228 . . . . 5 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ ∀𝑧 ∈ ℝ+𝑡 ∈ ℝ ∀𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
218216, 217syl5ibr 236 . . . 4 (𝜑 → (∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧) → (𝑦𝐵𝑆) ⇝𝑟 𝐶))
219213, 218impbid 202 . . 3 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ ∀𝑧 ∈ ℝ+𝑡 ∈ ℝ+𝑦𝐵 (𝑡 < 𝑦 → (abs‘(𝑆𝐶)) < 𝑧)))
220 cnxmet 22576 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
221 xmetres2 22166 . . . . 5 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
222220, 148, 221sylancr 695 . . . 4 (𝜑 → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
223220a1i 11 . . . 4 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
224 eqid 2622 . . . . 5 (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))
225 rlimcnp.j . . . . . 6 𝐽 = (TopOpen‘ℂfld)
226225cnfldtopn 22585 . . . . 5 𝐽 = (MetOpen‘(abs ∘ − ))
227224, 226metcnp2 22347 . . . 4 ((((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ 𝐴) → ((𝑥𝐴𝑅) ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐽)‘0) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧))))
228222, 223, 96, 227syl3anc 1326 . . 3 (𝜑 → ((𝑥𝐴𝑅) ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐽)‘0) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑤𝐴 ((𝑤((abs ∘ − ) ↾ (𝐴 × 𝐴))0) < 𝑟 → (((𝑥𝐴𝑅)‘𝑤)(abs ∘ − )((𝑥𝐴𝑅)‘0)) < 𝑧))))
229181, 219, 2283bitr4d 300 . 2 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ (𝑥𝐴𝑅) ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐽)‘0)))
230 rlimcnp.k . . . . . 6 𝐾 = (𝐽t 𝐴)
231 eqid 2622 . . . . . . . 8 ((abs ∘ − ) ↾ (𝐴 × 𝐴)) = ((abs ∘ − ) ↾ (𝐴 × 𝐴))
232231, 226, 224metrest 22329 . . . . . . 7 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐽t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
233220, 148, 232sylancr 695 . . . . . 6 (𝜑 → (𝐽t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
234230, 233syl5eq 2668 . . . . 5 (𝜑𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
235234oveq1d 6665 . . . 4 (𝜑 → (𝐾 CnP 𝐽) = ((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐽))
236235fveq1d 6193 . . 3 (𝜑 → ((𝐾 CnP 𝐽)‘0) = (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐽)‘0))
237236eleq2d 2687 . 2 (𝜑 → ((𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘0) ↔ (𝑥𝐴𝑅) ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐽)‘0)))
238229, 237bitr4d 271 1 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  cdif 3571  cun 3572  wss 3574  {csn 4177   class class class wbr 4653  cmpt 4729   × cxp 5112  cres 5116  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937  +∞cpnf 10071  *cxr 10073   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  +crp 11832  (,)cioo 12175  [,)cico 12177  abscabs 13974  𝑟 crli 14216  t crest 16081  TopOpenctopn 16082  ∞Metcxmt 19731  MetOpencmopn 19736  fldccnfld 19746   CnP ccnp 21029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-rlim 14220  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-bases 20750  df-cnp 21032
This theorem is referenced by:  rlimcnp2  24693
  Copyright terms: Public domain W3C validator