| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlim3 | Structured version Visualization version Unicode version | ||
| Description: Restrict the range of the
domain bound to reals greater than some
|
| Ref | Expression |
|---|---|
| rlim2.1 |
|
| rlim2.2 |
|
| rlim2.3 |
|
| rlim3.4 |
|
| Ref | Expression |
|---|---|
| rlim3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlim2.1 |
. . . 4
| |
| 2 | rlim2.2 |
. . . 4
| |
| 3 | rlim2.3 |
. . . 4
| |
| 4 | 1, 2, 3 | rlim2 14227 |
. . 3
|
| 5 | simpr 477 |
. . . . . . . 8
| |
| 6 | rlim3.4 |
. . . . . . . . 9
| |
| 7 | 6 | adantr 481 |
. . . . . . . 8
|
| 8 | 5, 7 | ifcld 4131 |
. . . . . . 7
|
| 9 | max1 12016 |
. . . . . . . 8
| |
| 10 | 6, 9 | sylan 488 |
. . . . . . 7
|
| 11 | elicopnf 12269 |
. . . . . . . 8
| |
| 12 | 7, 11 | syl 17 |
. . . . . . 7
|
| 13 | 8, 10, 12 | mpbir2and 957 |
. . . . . 6
|
| 14 | 2, 6 | jca 554 |
. . . . . . 7
|
| 15 | simpllr 799 |
. . . . . . . . . . 11
| |
| 16 | simplr 792 |
. . . . . . . . . . 11
| |
| 17 | max2 12018 |
. . . . . . . . . . 11
| |
| 18 | 15, 16, 17 | syl2anc 693 |
. . . . . . . . . 10
|
| 19 | 16, 15 | ifcld 4131 |
. . . . . . . . . . 11
|
| 20 | simpll 790 |
. . . . . . . . . . . 12
| |
| 21 | 20 | sselda 3603 |
. . . . . . . . . . 11
|
| 22 | letr 10131 |
. . . . . . . . . . 11
| |
| 23 | 16, 19, 21, 22 | syl3anc 1326 |
. . . . . . . . . 10
|
| 24 | 18, 23 | mpand 711 |
. . . . . . . . 9
|
| 25 | 24 | imim1d 82 |
. . . . . . . 8
|
| 26 | 25 | ralimdva 2962 |
. . . . . . 7
|
| 27 | 14, 26 | sylan 488 |
. . . . . 6
|
| 28 | breq1 4656 |
. . . . . . . . 9
| |
| 29 | 28 | imbi1d 331 |
. . . . . . . 8
|
| 30 | 29 | ralbidv 2986 |
. . . . . . 7
|
| 31 | 30 | rspcev 3309 |
. . . . . 6
|
| 32 | 13, 27, 31 | syl6an 568 |
. . . . 5
|
| 33 | 32 | rexlimdva 3031 |
. . . 4
|
| 34 | 33 | ralimdv 2963 |
. . 3
|
| 35 | 4, 34 | sylbid 230 |
. 2
|
| 36 | pnfxr 10092 |
. . . . . 6
| |
| 37 | icossre 12254 |
. . . . . 6
| |
| 38 | 6, 36, 37 | sylancl 694 |
. . . . 5
|
| 39 | ssrexv 3667 |
. . . . 5
| |
| 40 | 38, 39 | syl 17 |
. . . 4
|
| 41 | 40 | ralimdv 2963 |
. . 3
|
| 42 | 1, 2, 3 | rlim2 14227 |
. . 3
|
| 43 | 41, 42 | sylibrd 249 |
. 2
|
| 44 | 35, 43 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-ico 12181 df-rlim 14220 |
| This theorem is referenced by: rlimresb 14296 rlimsqzlem 14379 rlimcnp 24692 signsply0 30628 |
| Copyright terms: Public domain | W3C validator |