| Step | Hyp | Ref
| Expression |
| 1 | | simpl3 1066 |
. . . . . . 7
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → 𝐹:𝑌⟶𝑋) |
| 2 | | cnvimass 5485 |
. . . . . . . 8
⊢ (◡𝐹 “ 𝑥) ⊆ dom 𝐹 |
| 3 | | fdm 6051 |
. . . . . . . 8
⊢ (𝐹:𝑌⟶𝑋 → dom 𝐹 = 𝑌) |
| 4 | 2, 3 | syl5sseq 3653 |
. . . . . . 7
⊢ (𝐹:𝑌⟶𝑋 → (◡𝐹 “ 𝑥) ⊆ 𝑌) |
| 5 | 1, 4 | syl 17 |
. . . . . 6
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (◡𝐹 “ 𝑥) ⊆ 𝑌) |
| 6 | | simpl1 1064 |
. . . . . . 7
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → 𝑌 ∈ 𝐴) |
| 7 | | elpw2g 4827 |
. . . . . . 7
⊢ (𝑌 ∈ 𝐴 → ((◡𝐹 “ 𝑥) ∈ 𝒫 𝑌 ↔ (◡𝐹 “ 𝑥) ⊆ 𝑌)) |
| 8 | 6, 7 | syl 17 |
. . . . . 6
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ((◡𝐹 “ 𝑥) ∈ 𝒫 𝑌 ↔ (◡𝐹 “ 𝑥) ⊆ 𝑌)) |
| 9 | 5, 8 | mpbird 247 |
. . . . 5
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (◡𝐹 “ 𝑥) ∈ 𝒫 𝑌) |
| 10 | 9 | adantr 481 |
. . . 4
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) → (◡𝐹 “ 𝑥) ∈ 𝒫 𝑌) |
| 11 | | eqid 2622 |
. . . 4
⊢ (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) = (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) |
| 12 | 10, 11 | fmptd 6385 |
. . 3
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)):𝐿⟶𝒫 𝑌) |
| 13 | | frn 6053 |
. . 3
⊢ ((𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)):𝐿⟶𝒫 𝑌 → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ⊆ 𝒫 𝑌) |
| 14 | 12, 13 | syl 17 |
. 2
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ⊆ 𝒫 𝑌) |
| 15 | | filtop 21659 |
. . . . . . . 8
⊢ (𝐿 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐿) |
| 16 | 15 | 3ad2ant2 1083 |
. . . . . . 7
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → 𝑋 ∈ 𝐿) |
| 17 | 16 | adantr 481 |
. . . . . 6
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → 𝑋 ∈ 𝐿) |
| 18 | | fimacnv 6347 |
. . . . . . . . 9
⊢ (𝐹:𝑌⟶𝑋 → (◡𝐹 “ 𝑋) = 𝑌) |
| 19 | 18 | eqcomd 2628 |
. . . . . . . 8
⊢ (𝐹:𝑌⟶𝑋 → 𝑌 = (◡𝐹 “ 𝑋)) |
| 20 | 19 | 3ad2ant3 1084 |
. . . . . . 7
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → 𝑌 = (◡𝐹 “ 𝑋)) |
| 21 | 20 | adantr 481 |
. . . . . 6
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → 𝑌 = (◡𝐹 “ 𝑋)) |
| 22 | | imaeq2 5462 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝑋)) |
| 23 | 22 | eqeq2d 2632 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝑌 = (◡𝐹 “ 𝑥) ↔ 𝑌 = (◡𝐹 “ 𝑋))) |
| 24 | 23 | rspcev 3309 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐿 ∧ 𝑌 = (◡𝐹 “ 𝑋)) → ∃𝑥 ∈ 𝐿 𝑌 = (◡𝐹 “ 𝑥)) |
| 25 | 17, 21, 24 | syl2anc 693 |
. . . . 5
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ∃𝑥 ∈ 𝐿 𝑌 = (◡𝐹 “ 𝑥)) |
| 26 | 11 | elrnmpt 5372 |
. . . . . . 7
⊢ (𝑌 ∈ 𝐴 → (𝑌 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑌 = (◡𝐹 “ 𝑥))) |
| 27 | 26 | 3ad2ant1 1082 |
. . . . . 6
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (𝑌 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑌 = (◡𝐹 “ 𝑥))) |
| 28 | 27 | adantr 481 |
. . . . 5
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (𝑌 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑌 = (◡𝐹 “ 𝑥))) |
| 29 | 25, 28 | mpbird 247 |
. . . 4
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → 𝑌 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) |
| 30 | | ne0i 3921 |
. . . 4
⊢ (𝑌 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ≠ ∅) |
| 31 | 29, 30 | syl 17 |
. . 3
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ≠ ∅) |
| 32 | | 0nelfil 21653 |
. . . . . . 7
⊢ (𝐿 ∈ (Fil‘𝑋) → ¬ ∅ ∈
𝐿) |
| 33 | 32 | 3ad2ant2 1083 |
. . . . . 6
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → ¬ ∅ ∈ 𝐿) |
| 34 | 33 | adantr 481 |
. . . . 5
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ¬ ∅ ∈ 𝐿) |
| 35 | | 0ex 4790 |
. . . . . . 7
⊢ ∅
∈ V |
| 36 | 11 | elrnmpt 5372 |
. . . . . . 7
⊢ (∅
∈ V → (∅ ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 ∅ = (◡𝐹 “ 𝑥))) |
| 37 | 35, 36 | ax-mp 5 |
. . . . . 6
⊢ (∅
∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 ∅ = (◡𝐹 “ 𝑥)) |
| 38 | | ffn 6045 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹:𝑌⟶𝑋 → 𝐹 Fn 𝑌) |
| 39 | | fvelrnb 6243 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 Fn 𝑌 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧 ∈ 𝑌 (𝐹‘𝑧) = 𝑦)) |
| 40 | 38, 39 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹:𝑌⟶𝑋 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧 ∈ 𝑌 (𝐹‘𝑧) = 𝑦)) |
| 41 | 40 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧 ∈ 𝑌 (𝐹‘𝑧) = 𝑦)) |
| 42 | 41 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧 ∈ 𝑌 (𝐹‘𝑧) = 𝑦)) |
| 43 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹‘𝑧) = 𝑦 → ((𝐹‘𝑧) ∈ 𝑥 ↔ 𝑦 ∈ 𝑥)) |
| 44 | 43 | biimparc 504 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ 𝑥 ∧ (𝐹‘𝑧) = 𝑦) → (𝐹‘𝑧) ∈ 𝑥) |
| 45 | 44 | ad2ant2l 782 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥) ∧ (𝑧 ∈ 𝑌 ∧ (𝐹‘𝑧) = 𝑦)) → (𝐹‘𝑧) ∈ 𝑥) |
| 46 | 45 | adantll 750 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑧 ∈ 𝑌 ∧ (𝐹‘𝑧) = 𝑦)) → (𝐹‘𝑧) ∈ 𝑥) |
| 47 | | ffun 6048 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹:𝑌⟶𝑋 → Fun 𝐹) |
| 48 | 47 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → Fun 𝐹) |
| 49 | 48 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑧 ∈ 𝑌 ∧ (𝐹‘𝑧) = 𝑦)) → Fun 𝐹) |
| 50 | 3 | eleq2d 2687 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹:𝑌⟶𝑋 → (𝑧 ∈ dom 𝐹 ↔ 𝑧 ∈ 𝑌)) |
| 51 | 50 | biimpar 502 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹:𝑌⟶𝑋 ∧ 𝑧 ∈ 𝑌) → 𝑧 ∈ dom 𝐹) |
| 52 | 51 | 3ad2antl3 1225 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑧 ∈ 𝑌) → 𝑧 ∈ dom 𝐹) |
| 53 | 52 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑧 ∈ 𝑌) → 𝑧 ∈ dom 𝐹) |
| 54 | 53 | ad2ant2r 783 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑧 ∈ 𝑌 ∧ (𝐹‘𝑧) = 𝑦)) → 𝑧 ∈ dom 𝐹) |
| 55 | | fvimacnv 6332 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ dom 𝐹) → ((𝐹‘𝑧) ∈ 𝑥 ↔ 𝑧 ∈ (◡𝐹 “ 𝑥))) |
| 56 | 49, 54, 55 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑧 ∈ 𝑌 ∧ (𝐹‘𝑧) = 𝑦)) → ((𝐹‘𝑧) ∈ 𝑥 ↔ 𝑧 ∈ (◡𝐹 “ 𝑥))) |
| 57 | 46, 56 | mpbid 222 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑧 ∈ 𝑌 ∧ (𝐹‘𝑧) = 𝑦)) → 𝑧 ∈ (◡𝐹 “ 𝑥)) |
| 58 | | n0i 3920 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ (◡𝐹 “ 𝑥) → ¬ (◡𝐹 “ 𝑥) = ∅) |
| 59 | | eqcom 2629 |
. . . . . . . . . . . . . . . . . 18
⊢ ((◡𝐹 “ 𝑥) = ∅ ↔ ∅ = (◡𝐹 “ 𝑥)) |
| 60 | 58, 59 | sylnib 318 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ (◡𝐹 “ 𝑥) → ¬ ∅ = (◡𝐹 “ 𝑥)) |
| 61 | 57, 60 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑧 ∈ 𝑌 ∧ (𝐹‘𝑧) = 𝑦)) → ¬ ∅ = (◡𝐹 “ 𝑥)) |
| 62 | 61 | rexlimdvaa 3032 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) → (∃𝑧 ∈ 𝑌 (𝐹‘𝑧) = 𝑦 → ¬ ∅ = (◡𝐹 “ 𝑥))) |
| 63 | 42, 62 | sylbid 230 |
. . . . . . . . . . . . . 14
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) → (𝑦 ∈ ran 𝐹 → ¬ ∅ = (◡𝐹 “ 𝑥))) |
| 64 | 63 | con2d 129 |
. . . . . . . . . . . . 13
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥)) → (∅ = (◡𝐹 “ 𝑥) → ¬ 𝑦 ∈ ran 𝐹)) |
| 65 | 64 | expr 643 |
. . . . . . . . . . . 12
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) → (𝑦 ∈ 𝑥 → (∅ = (◡𝐹 “ 𝑥) → ¬ 𝑦 ∈ ran 𝐹))) |
| 66 | 65 | com23 86 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) → (∅ = (◡𝐹 “ 𝑥) → (𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹))) |
| 67 | 66 | impr 649 |
. . . . . . . . . 10
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ ∅ = (◡𝐹 “ 𝑥))) → (𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹)) |
| 68 | 67 | alrimiv 1855 |
. . . . . . . . 9
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ ∅ = (◡𝐹 “ 𝑥))) → ∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹)) |
| 69 | | imnan 438 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ¬ (𝑦 ∈ 𝑥 ∧ 𝑦 ∈ ran 𝐹)) |
| 70 | | elin 3796 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (𝑥 ∩ ran 𝐹) ↔ (𝑦 ∈ 𝑥 ∧ 𝑦 ∈ ran 𝐹)) |
| 71 | 69, 70 | xchbinxr 325 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ¬ 𝑦 ∈ (𝑥 ∩ ran 𝐹)) |
| 72 | 71 | albii 1747 |
. . . . . . . . . 10
⊢
(∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ∀𝑦 ¬ 𝑦 ∈ (𝑥 ∩ ran 𝐹)) |
| 73 | | eq0 3929 |
. . . . . . . . . 10
⊢ ((𝑥 ∩ ran 𝐹) = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ (𝑥 ∩ ran 𝐹)) |
| 74 | | eqcom 2629 |
. . . . . . . . . 10
⊢ ((𝑥 ∩ ran 𝐹) = ∅ ↔ ∅ = (𝑥 ∩ ran 𝐹)) |
| 75 | 72, 73, 74 | 3bitr2i 288 |
. . . . . . . . 9
⊢
(∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ∅ = (𝑥 ∩ ran 𝐹)) |
| 76 | 68, 75 | sylib 208 |
. . . . . . . 8
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ ∅ = (◡𝐹 “ 𝑥))) → ∅ = (𝑥 ∩ ran 𝐹)) |
| 77 | | simpll2 1101 |
. . . . . . . . 9
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ ∅ = (◡𝐹 “ 𝑥))) → 𝐿 ∈ (Fil‘𝑋)) |
| 78 | | simprl 794 |
. . . . . . . . 9
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ ∅ = (◡𝐹 “ 𝑥))) → 𝑥 ∈ 𝐿) |
| 79 | | simplr 792 |
. . . . . . . . 9
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ ∅ = (◡𝐹 “ 𝑥))) → ran 𝐹 ∈ 𝐿) |
| 80 | | filin 21658 |
. . . . . . . . 9
⊢ ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐿 ∧ ran 𝐹 ∈ 𝐿) → (𝑥 ∩ ran 𝐹) ∈ 𝐿) |
| 81 | 77, 78, 79, 80 | syl3anc 1326 |
. . . . . . . 8
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ ∅ = (◡𝐹 “ 𝑥))) → (𝑥 ∩ ran 𝐹) ∈ 𝐿) |
| 82 | 76, 81 | eqeltrd 2701 |
. . . . . . 7
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ (𝑥 ∈ 𝐿 ∧ ∅ = (◡𝐹 “ 𝑥))) → ∅ ∈ 𝐿) |
| 83 | 82 | rexlimdvaa 3032 |
. . . . . 6
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (∃𝑥 ∈ 𝐿 ∅ = (◡𝐹 “ 𝑥) → ∅ ∈ 𝐿)) |
| 84 | 37, 83 | syl5bi 232 |
. . . . 5
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (∅ ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) → ∅ ∈ 𝐿)) |
| 85 | 34, 84 | mtod 189 |
. . . 4
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ¬ ∅ ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) |
| 86 | | df-nel 2898 |
. . . 4
⊢ (∅
∉ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ¬ ∅ ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) |
| 87 | 85, 86 | sylibr 224 |
. . 3
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ∅ ∉ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) |
| 88 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑟 ∈ V |
| 89 | 11 | elrnmpt 5372 |
. . . . . . . . 9
⊢ (𝑟 ∈ V → (𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑟 = (◡𝐹 “ 𝑥))) |
| 90 | 88, 89 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑟 = (◡𝐹 “ 𝑥)) |
| 91 | | imaeq2 5462 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑢 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝑢)) |
| 92 | 91 | eqeq2d 2632 |
. . . . . . . . 9
⊢ (𝑥 = 𝑢 → (𝑟 = (◡𝐹 “ 𝑥) ↔ 𝑟 = (◡𝐹 “ 𝑢))) |
| 93 | 92 | cbvrexv 3172 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐿 𝑟 = (◡𝐹 “ 𝑥) ↔ ∃𝑢 ∈ 𝐿 𝑟 = (◡𝐹 “ 𝑢)) |
| 94 | 90, 93 | bitri 264 |
. . . . . . 7
⊢ (𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑢 ∈ 𝐿 𝑟 = (◡𝐹 “ 𝑢)) |
| 95 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑠 ∈ V |
| 96 | 11 | elrnmpt 5372 |
. . . . . . . . 9
⊢ (𝑠 ∈ V → (𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑥))) |
| 97 | 95, 96 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑥)) |
| 98 | | imaeq2 5462 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑣 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝑣)) |
| 99 | 98 | eqeq2d 2632 |
. . . . . . . . 9
⊢ (𝑥 = 𝑣 → (𝑠 = (◡𝐹 “ 𝑥) ↔ 𝑠 = (◡𝐹 “ 𝑣))) |
| 100 | 99 | cbvrexv 3172 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐿 𝑠 = (◡𝐹 “ 𝑥) ↔ ∃𝑣 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑣)) |
| 101 | 97, 100 | bitri 264 |
. . . . . . 7
⊢ (𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑣 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑣)) |
| 102 | 94, 101 | anbi12i 733 |
. . . . . 6
⊢ ((𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ 𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ↔ (∃𝑢 ∈ 𝐿 𝑟 = (◡𝐹 “ 𝑢) ∧ ∃𝑣 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑣))) |
| 103 | | reeanv 3107 |
. . . . . 6
⊢
(∃𝑢 ∈
𝐿 ∃𝑣 ∈ 𝐿 (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)) ↔ (∃𝑢 ∈ 𝐿 𝑟 = (◡𝐹 “ 𝑢) ∧ ∃𝑣 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑣))) |
| 104 | 102, 103 | bitr4i 267 |
. . . . 5
⊢ ((𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ 𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ↔ ∃𝑢 ∈ 𝐿 ∃𝑣 ∈ 𝐿 (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣))) |
| 105 | | filin 21658 |
. . . . . . . . . . . . . 14
⊢ ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) → (𝑢 ∩ 𝑣) ∈ 𝐿) |
| 106 | 105 | 3expb 1266 |
. . . . . . . . . . . . 13
⊢ ((𝐿 ∈ (Fil‘𝑋) ∧ (𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿)) → (𝑢 ∩ 𝑣) ∈ 𝐿) |
| 107 | 106 | adantlr 751 |
. . . . . . . . . . . 12
⊢ (((𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿)) → (𝑢 ∩ 𝑣) ∈ 𝐿) |
| 108 | | eqidd 2623 |
. . . . . . . . . . . 12
⊢ (((𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿)) → (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ (𝑢 ∩ 𝑣))) |
| 109 | | imaeq2 5462 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑢 ∩ 𝑣) → (◡𝐹 “ 𝑥) = (◡𝐹 “ (𝑢 ∩ 𝑣))) |
| 110 | 109 | eqeq2d 2632 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑢 ∩ 𝑣) → ((◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ 𝑥) ↔ (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ (𝑢 ∩ 𝑣)))) |
| 111 | 110 | rspcev 3309 |
. . . . . . . . . . . 12
⊢ (((𝑢 ∩ 𝑣) ∈ 𝐿 ∧ (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ (𝑢 ∩ 𝑣))) → ∃𝑥 ∈ 𝐿 (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ 𝑥)) |
| 112 | 107, 108,
111 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (((𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿)) → ∃𝑥 ∈ 𝐿 (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ 𝑥)) |
| 113 | 112 | 3adantl1 1217 |
. . . . . . . . . 10
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿)) → ∃𝑥 ∈ 𝐿 (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ 𝑥)) |
| 114 | 113 | ad2ant2r 783 |
. . . . . . . . 9
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → ∃𝑥 ∈ 𝐿 (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ 𝑥)) |
| 115 | | simpll1 1100 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → 𝑌 ∈ 𝐴) |
| 116 | | cnvimass 5485 |
. . . . . . . . . . . . . 14
⊢ (◡𝐹 “ (𝑢 ∩ 𝑣)) ⊆ dom 𝐹 |
| 117 | 116, 3 | syl5sseq 3653 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝑌⟶𝑋 → (◡𝐹 “ (𝑢 ∩ 𝑣)) ⊆ 𝑌) |
| 118 | 117 | 3ad2ant3 1084 |
. . . . . . . . . . . 12
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (◡𝐹 “ (𝑢 ∩ 𝑣)) ⊆ 𝑌) |
| 119 | 118 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → (◡𝐹 “ (𝑢 ∩ 𝑣)) ⊆ 𝑌) |
| 120 | 115, 119 | ssexd 4805 |
. . . . . . . . . 10
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → (◡𝐹 “ (𝑢 ∩ 𝑣)) ∈ V) |
| 121 | 11 | elrnmpt 5372 |
. . . . . . . . . 10
⊢ ((◡𝐹 “ (𝑢 ∩ 𝑣)) ∈ V → ((◡𝐹 “ (𝑢 ∩ 𝑣)) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ 𝑥))) |
| 122 | 120, 121 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → ((◡𝐹 “ (𝑢 ∩ 𝑣)) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ 𝑥))) |
| 123 | 114, 122 | mpbird 247 |
. . . . . . . 8
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → (◡𝐹 “ (𝑢 ∩ 𝑣)) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) |
| 124 | | simprrl 804 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → 𝑟 = (◡𝐹 “ 𝑢)) |
| 125 | | simprrr 805 |
. . . . . . . . . . 11
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → 𝑠 = (◡𝐹 “ 𝑣)) |
| 126 | 124, 125 | ineq12d 3815 |
. . . . . . . . . 10
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → (𝑟 ∩ 𝑠) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣))) |
| 127 | | funcnvcnv 5956 |
. . . . . . . . . . . . 13
⊢ (Fun
𝐹 → Fun ◡◡𝐹) |
| 128 | | imain 5974 |
. . . . . . . . . . . . 13
⊢ (Fun
◡◡𝐹 → (◡𝐹 “ (𝑢 ∩ 𝑣)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣))) |
| 129 | 47, 127, 128 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑌⟶𝑋 → (◡𝐹 “ (𝑢 ∩ 𝑣)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣))) |
| 130 | 129 | 3ad2ant3 1084 |
. . . . . . . . . . 11
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (◡𝐹 “ (𝑢 ∩ 𝑣)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣))) |
| 131 | 130 | ad2antrr 762 |
. . . . . . . . . 10
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → (◡𝐹 “ (𝑢 ∩ 𝑣)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣))) |
| 132 | 126, 131 | eqtr4d 2659 |
. . . . . . . . 9
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → (𝑟 ∩ 𝑠) = (◡𝐹 “ (𝑢 ∩ 𝑣))) |
| 133 | | eqimss2 3658 |
. . . . . . . . 9
⊢ ((𝑟 ∩ 𝑠) = (◡𝐹 “ (𝑢 ∩ 𝑣)) → (◡𝐹 “ (𝑢 ∩ 𝑣)) ⊆ (𝑟 ∩ 𝑠)) |
| 134 | 132, 133 | syl 17 |
. . . . . . . 8
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → (◡𝐹 “ (𝑢 ∩ 𝑣)) ⊆ (𝑟 ∩ 𝑠)) |
| 135 | | sseq1 3626 |
. . . . . . . . 9
⊢ (𝑡 = (◡𝐹 “ (𝑢 ∩ 𝑣)) → (𝑡 ⊆ (𝑟 ∩ 𝑠) ↔ (◡𝐹 “ (𝑢 ∩ 𝑣)) ⊆ (𝑟 ∩ 𝑠))) |
| 136 | 135 | rspcev 3309 |
. . . . . . . 8
⊢ (((◡𝐹 “ (𝑢 ∩ 𝑣)) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ (◡𝐹 “ (𝑢 ∩ 𝑣)) ⊆ (𝑟 ∩ 𝑠)) → ∃𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))𝑡 ⊆ (𝑟 ∩ 𝑠)) |
| 137 | 123, 134,
136 | syl2anc 693 |
. . . . . . 7
⊢ ((((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) ∧ ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) ∧ (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)))) → ∃𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))𝑡 ⊆ (𝑟 ∩ 𝑠)) |
| 138 | 137 | exp32 631 |
. . . . . 6
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ((𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿) → ((𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)) → ∃𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))𝑡 ⊆ (𝑟 ∩ 𝑠)))) |
| 139 | 138 | rexlimdvv 3037 |
. . . . 5
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (∃𝑢 ∈ 𝐿 ∃𝑣 ∈ 𝐿 (𝑟 = (◡𝐹 “ 𝑢) ∧ 𝑠 = (◡𝐹 “ 𝑣)) → ∃𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))𝑡 ⊆ (𝑟 ∩ 𝑠))) |
| 140 | 104, 139 | syl5bi 232 |
. . . 4
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ((𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ 𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) → ∃𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))𝑡 ⊆ (𝑟 ∩ 𝑠))) |
| 141 | 140 | ralrimivv 2970 |
. . 3
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ∀𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∀𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∃𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))𝑡 ⊆ (𝑟 ∩ 𝑠)) |
| 142 | 31, 87, 141 | 3jca 1242 |
. 2
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ≠ ∅ ∧ ∅ ∉ ran
(𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ ∀𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∀𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∃𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))𝑡 ⊆ (𝑟 ∩ 𝑠))) |
| 143 | | isfbas2 21639 |
. . 3
⊢ (𝑌 ∈ 𝐴 → (ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ (fBas‘𝑌) ↔ (ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ⊆ 𝒫 𝑌 ∧ (ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ≠ ∅ ∧ ∅ ∉ ran
(𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ ∀𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∀𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∃𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))𝑡 ⊆ (𝑟 ∩ 𝑠))))) |
| 144 | 6, 143 | syl 17 |
. 2
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → (ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ (fBas‘𝑌) ↔ (ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ⊆ 𝒫 𝑌 ∧ (ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ≠ ∅ ∧ ∅ ∉ ran
(𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ ∀𝑟 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∀𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∃𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))𝑡 ⊆ (𝑟 ∩ 𝑠))))) |
| 145 | 14, 142, 144 | mpbir2and 957 |
1
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ (fBas‘𝑌)) |