MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfnfm Structured version   Visualization version   GIF version

Theorem fmfnfm 21762
Description: A filter finer than an image filter is an image filter of the same function. (Contributed by Jeff Hankins, 13-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypotheses
Ref Expression
fmfnfm.b (𝜑𝐵 ∈ (fBas‘𝑌))
fmfnfm.l (𝜑𝐿 ∈ (Fil‘𝑋))
fmfnfm.f (𝜑𝐹:𝑌𝑋)
fmfnfm.fm (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
Assertion
Ref Expression
fmfnfm (𝜑 → ∃𝑓 ∈ (Fil‘𝑌)(𝐵𝑓𝐿 = ((𝑋 FilMap 𝐹)‘𝑓)))
Distinct variable groups:   𝐵,𝑓   𝑓,𝐹   𝑓,𝐿   𝑓,𝑋   𝑓,𝑌
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem fmfnfm
Dummy variables 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmfnfm.b . . . . . 6 (𝜑𝐵 ∈ (fBas‘𝑌))
2 fbsspw 21636 . . . . . 6 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ 𝒫 𝑌)
31, 2syl 17 . . . . 5 (𝜑𝐵 ⊆ 𝒫 𝑌)
4 elfvdm 6220 . . . . . . . 8 (𝐵 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas)
51, 4syl 17 . . . . . . 7 (𝜑𝑌 ∈ dom fBas)
6 fmfnfm.l . . . . . . 7 (𝜑𝐿 ∈ (Fil‘𝑋))
7 fmfnfm.f . . . . . . 7 (𝜑𝐹:𝑌𝑋)
8 fmfnfm.fm . . . . . . . 8 (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
9 ffn 6045 . . . . . . . . . . 11 (𝐹:𝑌𝑋𝐹 Fn 𝑌)
10 dffn4 6121 . . . . . . . . . . 11 (𝐹 Fn 𝑌𝐹:𝑌onto→ran 𝐹)
119, 10sylib 208 . . . . . . . . . 10 (𝐹:𝑌𝑋𝐹:𝑌onto→ran 𝐹)
12 foima 6120 . . . . . . . . . 10 (𝐹:𝑌onto→ran 𝐹 → (𝐹𝑌) = ran 𝐹)
137, 11, 123syl 18 . . . . . . . . 9 (𝜑 → (𝐹𝑌) = ran 𝐹)
14 filtop 21659 . . . . . . . . . . 11 (𝐿 ∈ (Fil‘𝑋) → 𝑋𝐿)
156, 14syl 17 . . . . . . . . . 10 (𝜑𝑋𝐿)
16 fgcl 21682 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑌) → (𝑌filGen𝐵) ∈ (Fil‘𝑌))
17 filtop 21659 . . . . . . . . . . 11 ((𝑌filGen𝐵) ∈ (Fil‘𝑌) → 𝑌 ∈ (𝑌filGen𝐵))
181, 16, 173syl 18 . . . . . . . . . 10 (𝜑𝑌 ∈ (𝑌filGen𝐵))
19 eqid 2622 . . . . . . . . . . 11 (𝑌filGen𝐵) = (𝑌filGen𝐵)
2019imaelfm 21755 . . . . . . . . . 10 (((𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑌 ∈ (𝑌filGen𝐵)) → (𝐹𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
2115, 1, 7, 18, 20syl31anc 1329 . . . . . . . . 9 (𝜑 → (𝐹𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
2213, 21eqeltrrd 2702 . . . . . . . 8 (𝜑 → ran 𝐹 ∈ ((𝑋 FilMap 𝐹)‘𝐵))
238, 22sseldd 3604 . . . . . . 7 (𝜑 → ran 𝐹𝐿)
24 rnelfmlem 21756 . . . . . . 7 (((𝑌 ∈ dom fBas ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌))
255, 6, 7, 23, 24syl31anc 1329 . . . . . 6 (𝜑 → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌))
26 fbsspw 21636 . . . . . 6 (ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ 𝒫 𝑌)
2725, 26syl 17 . . . . 5 (𝜑 → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ 𝒫 𝑌)
283, 27unssd 3789 . . . 4 (𝜑 → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ 𝒫 𝑌)
29 ssun1 3776 . . . . 5 𝐵 ⊆ (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))
30 fbasne0 21634 . . . . . 6 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ≠ ∅)
311, 30syl 17 . . . . 5 (𝜑𝐵 ≠ ∅)
32 ssn0 3976 . . . . 5 ((𝐵 ⊆ (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∧ 𝐵 ≠ ∅) → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ≠ ∅)
3329, 31, 32sylancr 695 . . . 4 (𝜑 → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ≠ ∅)
34 vex 3203 . . . . . . . . 9 𝑡 ∈ V
35 eqid 2622 . . . . . . . . . 10 (𝑥𝐿 ↦ (𝐹𝑥)) = (𝑥𝐿 ↦ (𝐹𝑥))
3635elrnmpt 5372 . . . . . . . . 9 (𝑡 ∈ V → (𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑡 = (𝐹𝑥)))
3734, 36ax-mp 5 . . . . . . . 8 (𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑡 = (𝐹𝑥))
38 0nelfil 21653 . . . . . . . . . . . . . 14 (𝐿 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐿)
396, 38syl 17 . . . . . . . . . . . . 13 (𝜑 → ¬ ∅ ∈ 𝐿)
4039ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → ¬ ∅ ∈ 𝐿)
416adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝐵) → 𝐿 ∈ (Fil‘𝑋))
428adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝐵) → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
4315, 1, 73jca 1242 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋))
4443adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠𝐵) → (𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋))
45 ssfg 21676 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ (𝑌filGen𝐵))
461, 45syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ⊆ (𝑌filGen𝐵))
4746sselda 3603 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠𝐵) → 𝑠 ∈ (𝑌filGen𝐵))
4819imaelfm 21755 . . . . . . . . . . . . . . . . 17 (((𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑠 ∈ (𝑌filGen𝐵)) → (𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
4944, 47, 48syl2anc 693 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝐵) → (𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
5042, 49sseldd 3604 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝐵) → (𝐹𝑠) ∈ 𝐿)
5141, 50jca 554 . . . . . . . . . . . . . 14 ((𝜑𝑠𝐵) → (𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿))
52 filin 21658 . . . . . . . . . . . . . . 15 ((𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
53523expa 1265 . . . . . . . . . . . . . 14 (((𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿) ∧ 𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
5451, 53sylan 488 . . . . . . . . . . . . 13 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
55 eleq1 2689 . . . . . . . . . . . . 13 (((𝐹𝑠) ∩ 𝑥) = ∅ → (((𝐹𝑠) ∩ 𝑥) ∈ 𝐿 ↔ ∅ ∈ 𝐿))
5654, 55syl5ibcom 235 . . . . . . . . . . . 12 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (((𝐹𝑠) ∩ 𝑥) = ∅ → ∅ ∈ 𝐿))
5740, 56mtod 189 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → ¬ ((𝐹𝑠) ∩ 𝑥) = ∅)
58 neq0 3930 . . . . . . . . . . . 12 (¬ ((𝐹𝑠) ∩ 𝑥) = ∅ ↔ ∃𝑡 𝑡 ∈ ((𝐹𝑠) ∩ 𝑥))
59 elin 3796 . . . . . . . . . . . . . 14 (𝑡 ∈ ((𝐹𝑠) ∩ 𝑥) ↔ (𝑡 ∈ (𝐹𝑠) ∧ 𝑡𝑥))
60 ffun 6048 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑌𝑋 → Fun 𝐹)
61 fvelima 6248 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐹𝑡 ∈ (𝐹𝑠)) → ∃𝑦𝑠 (𝐹𝑦) = 𝑡)
6261ex 450 . . . . . . . . . . . . . . . . . 18 (Fun 𝐹 → (𝑡 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑡))
637, 60, 623syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑡 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑡))
6463ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (𝑡 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑡))
657, 60syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → Fun 𝐹)
6665ad3antrrr 766 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → Fun 𝐹)
67 fbelss 21637 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑠𝐵) → 𝑠𝑌)
681, 67sylan 488 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠𝐵) → 𝑠𝑌)
69 fdm 6051 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹:𝑌𝑋 → dom 𝐹 = 𝑌)
707, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → dom 𝐹 = 𝑌)
7170adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠𝐵) → dom 𝐹 = 𝑌)
7268, 71sseqtr4d 3642 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠𝐵) → 𝑠 ⊆ dom 𝐹)
7372adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → 𝑠 ⊆ dom 𝐹)
7473sselda 3603 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → 𝑦 ∈ dom 𝐹)
75 fvimacnv 6332 . . . . . . . . . . . . . . . . . . . 20 ((Fun 𝐹𝑦 ∈ dom 𝐹) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
7666, 74, 75syl2anc 693 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
77 inelcm 4032 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝑠𝑦 ∈ (𝐹𝑥)) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)
7877ex 450 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑠 → (𝑦 ∈ (𝐹𝑥) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
7978adantl 482 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → (𝑦 ∈ (𝐹𝑥) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
8076, 79sylbid 230 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → ((𝐹𝑦) ∈ 𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
81 eleq1 2689 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑦) = 𝑡 → ((𝐹𝑦) ∈ 𝑥𝑡𝑥))
8281imbi1d 331 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑦) = 𝑡 → (((𝐹𝑦) ∈ 𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅) ↔ (𝑡𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)))
8380, 82syl5ibcom 235 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → ((𝐹𝑦) = 𝑡 → (𝑡𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)))
8483rexlimdva 3031 . . . . . . . . . . . . . . . 16 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (∃𝑦𝑠 (𝐹𝑦) = 𝑡 → (𝑡𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)))
8564, 84syld 47 . . . . . . . . . . . . . . 15 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (𝑡 ∈ (𝐹𝑠) → (𝑡𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)))
8685impd 447 . . . . . . . . . . . . . 14 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → ((𝑡 ∈ (𝐹𝑠) ∧ 𝑡𝑥) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
8759, 86syl5bi 232 . . . . . . . . . . . . 13 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (𝑡 ∈ ((𝐹𝑠) ∩ 𝑥) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
8887exlimdv 1861 . . . . . . . . . . . 12 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (∃𝑡 𝑡 ∈ ((𝐹𝑠) ∩ 𝑥) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
8958, 88syl5bi 232 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (¬ ((𝐹𝑠) ∩ 𝑥) = ∅ → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
9057, 89mpd 15 . . . . . . . . . 10 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)
91 ineq2 3808 . . . . . . . . . . 11 (𝑡 = (𝐹𝑥) → (𝑠𝑡) = (𝑠 ∩ (𝐹𝑥)))
9291neeq1d 2853 . . . . . . . . . 10 (𝑡 = (𝐹𝑥) → ((𝑠𝑡) ≠ ∅ ↔ (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
9390, 92syl5ibrcom 237 . . . . . . . . 9 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (𝑡 = (𝐹𝑥) → (𝑠𝑡) ≠ ∅))
9493rexlimdva 3031 . . . . . . . 8 ((𝜑𝑠𝐵) → (∃𝑥𝐿 𝑡 = (𝐹𝑥) → (𝑠𝑡) ≠ ∅))
9537, 94syl5bi 232 . . . . . . 7 ((𝜑𝑠𝐵) → (𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) → (𝑠𝑡) ≠ ∅))
9695expimpd 629 . . . . . 6 (𝜑 → ((𝑠𝐵𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) → (𝑠𝑡) ≠ ∅))
9796ralrimivv 2970 . . . . 5 (𝜑 → ∀𝑠𝐵𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝑠𝑡) ≠ ∅)
98 fbunfip 21673 . . . . . 6 ((𝐵 ∈ (fBas‘𝑌) ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ↔ ∀𝑠𝐵𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝑠𝑡) ≠ ∅))
991, 25, 98syl2anc 693 . . . . 5 (𝜑 → (¬ ∅ ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ↔ ∀𝑠𝐵𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝑠𝑡) ≠ ∅))
10097, 99mpbird 247 . . . 4 (𝜑 → ¬ ∅ ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
101 fsubbas 21671 . . . . 5 (𝑌 ∈ dom fBas → ((fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) ↔ ((𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ 𝒫 𝑌 ∧ (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
1021, 4, 1013syl 18 . . . 4 (𝜑 → ((fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) ↔ ((𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ 𝒫 𝑌 ∧ (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
10328, 33, 100, 102mpbir3and 1245 . . 3 (𝜑 → (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌))
104 fgcl 21682 . . 3 ((fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) → (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ∈ (Fil‘𝑌))
105103, 104syl 17 . 2 (𝜑 → (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ∈ (Fil‘𝑌))
106 unexg 6959 . . . . . 6 ((𝐵 ∈ (fBas‘𝑌) ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌)) → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V)
1071, 25, 106syl2anc 693 . . . . 5 (𝜑 → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V)
108 ssfii 8325 . . . . 5 ((𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
109107, 108syl 17 . . . 4 (𝜑 → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
110109unssad 3790 . . 3 (𝜑𝐵 ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
111 ssfg 21676 . . . 4 ((fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) → (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))))
112103, 111syl 17 . . 3 (𝜑 → (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))))
113110, 112sstrd 3613 . 2 (𝜑𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))))
1141, 6, 7, 8fmfnfmlem4 21761 . . . . 5 (𝜑 → (𝑡𝐿 ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
115 elfm 21751 . . . . . 6 ((𝑋𝐿 ∧ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
11615, 103, 7, 115syl3anc 1326 . . . . 5 (𝜑 → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
117114, 116bitr4d 271 . . . 4 (𝜑 → (𝑡𝐿𝑡 ∈ ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
118117eqrdv 2620 . . 3 (𝜑𝐿 = ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))))
119 eqid 2622 . . . . 5 (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
120119fmfg 21753 . . . 4 ((𝑋𝐿 ∧ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
12115, 103, 7, 120syl3anc 1326 . . 3 (𝜑 → ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
122118, 121eqtrd 2656 . 2 (𝜑𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
123 sseq2 3627 . . . 4 (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) → (𝐵𝑓𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
124 fveq2 6191 . . . . 5 (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) → ((𝑋 FilMap 𝐹)‘𝑓) = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
125124eqeq2d 2632 . . . 4 (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) → (𝐿 = ((𝑋 FilMap 𝐹)‘𝑓) ↔ 𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))))))
126123, 125anbi12d 747 . . 3 (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) → ((𝐵𝑓𝐿 = ((𝑋 FilMap 𝐹)‘𝑓)) ↔ (𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ∧ 𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))))
127126rspcev 3309 . 2 (((𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ∈ (Fil‘𝑌) ∧ (𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ∧ 𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))) → ∃𝑓 ∈ (Fil‘𝑌)(𝐵𝑓𝐿 = ((𝑋 FilMap 𝐹)‘𝑓)))
128105, 113, 122, 127syl12anc 1324 1 (𝜑 → ∃𝑓 ∈ (Fil‘𝑌)(𝐵𝑓𝐿 = ((𝑋 FilMap 𝐹)‘𝑓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  cun 3572  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158  cmpt 4729  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117  Fun wfun 5882   Fn wfn 5883  wf 5884  ontowfo 5886  cfv 5888  (class class class)co 6650  ficfi 8316  fBascfbas 19734  filGencfg 19735  Filcfil 21649   FilMap cfm 21737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-fbas 19743  df-fg 19744  df-fil 21650  df-fm 21742
This theorem is referenced by:  fmufil  21763  cnpfcf  21845
  Copyright terms: Public domain W3C validator