| Step | Hyp | Ref
| Expression |
| 1 | | fmfnfm.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ (fBas‘𝑌)) |
| 2 | | fbsspw 21636 |
. . . . . 6
⊢ (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ 𝒫 𝑌) |
| 3 | 1, 2 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ 𝒫 𝑌) |
| 4 | | elfvdm 6220 |
. . . . . . . 8
⊢ (𝐵 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas) |
| 5 | 1, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ dom fBas) |
| 6 | | fmfnfm.l |
. . . . . . 7
⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑋)) |
| 7 | | fmfnfm.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝑌⟶𝑋) |
| 8 | | fmfnfm.fm |
. . . . . . . 8
⊢ (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿) |
| 9 | | ffn 6045 |
. . . . . . . . . . 11
⊢ (𝐹:𝑌⟶𝑋 → 𝐹 Fn 𝑌) |
| 10 | | dffn4 6121 |
. . . . . . . . . . 11
⊢ (𝐹 Fn 𝑌 ↔ 𝐹:𝑌–onto→ran 𝐹) |
| 11 | 9, 10 | sylib 208 |
. . . . . . . . . 10
⊢ (𝐹:𝑌⟶𝑋 → 𝐹:𝑌–onto→ran 𝐹) |
| 12 | | foima 6120 |
. . . . . . . . . 10
⊢ (𝐹:𝑌–onto→ran 𝐹 → (𝐹 “ 𝑌) = ran 𝐹) |
| 13 | 7, 11, 12 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 “ 𝑌) = ran 𝐹) |
| 14 | | filtop 21659 |
. . . . . . . . . . 11
⊢ (𝐿 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐿) |
| 15 | 6, 14 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝐿) |
| 16 | | fgcl 21682 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ (fBas‘𝑌) → (𝑌filGen𝐵) ∈ (Fil‘𝑌)) |
| 17 | | filtop 21659 |
. . . . . . . . . . 11
⊢ ((𝑌filGen𝐵) ∈ (Fil‘𝑌) → 𝑌 ∈ (𝑌filGen𝐵)) |
| 18 | 1, 16, 17 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ (𝑌filGen𝐵)) |
| 19 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (𝑌filGen𝐵) = (𝑌filGen𝐵) |
| 20 | 19 | imaelfm 21755 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ 𝐿 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑌 ∈ (𝑌filGen𝐵)) → (𝐹 “ 𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝐵)) |
| 21 | 15, 1, 7, 18, 20 | syl31anc 1329 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 “ 𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝐵)) |
| 22 | 13, 21 | eqeltrrd 2702 |
. . . . . . . 8
⊢ (𝜑 → ran 𝐹 ∈ ((𝑋 FilMap 𝐹)‘𝐵)) |
| 23 | 8, 22 | sseldd 3604 |
. . . . . . 7
⊢ (𝜑 → ran 𝐹 ∈ 𝐿) |
| 24 | | rnelfmlem 21756 |
. . . . . . 7
⊢ (((𝑌 ∈ dom fBas ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ (fBas‘𝑌)) |
| 25 | 5, 6, 7, 23, 24 | syl31anc 1329 |
. . . . . 6
⊢ (𝜑 → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ (fBas‘𝑌)) |
| 26 | | fbsspw 21636 |
. . . . . 6
⊢ (ran
(𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ (fBas‘𝑌) → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ⊆ 𝒫 𝑌) |
| 27 | 25, 26 | syl 17 |
. . . . 5
⊢ (𝜑 → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ⊆ 𝒫 𝑌) |
| 28 | 3, 27 | unssd 3789 |
. . . 4
⊢ (𝜑 → (𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ⊆ 𝒫 𝑌) |
| 29 | | ssun1 3776 |
. . . . 5
⊢ 𝐵 ⊆ (𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) |
| 30 | | fbasne0 21634 |
. . . . . 6
⊢ (𝐵 ∈ (fBas‘𝑌) → 𝐵 ≠ ∅) |
| 31 | 1, 30 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐵 ≠ ∅) |
| 32 | | ssn0 3976 |
. . . . 5
⊢ ((𝐵 ⊆ (𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ∧ 𝐵 ≠ ∅) → (𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ≠ ∅) |
| 33 | 29, 31, 32 | sylancr 695 |
. . . 4
⊢ (𝜑 → (𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ≠ ∅) |
| 34 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑡 ∈ V |
| 35 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) = (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) |
| 36 | 35 | elrnmpt 5372 |
. . . . . . . . 9
⊢ (𝑡 ∈ V → (𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑡 = (◡𝐹 “ 𝑥))) |
| 37 | 34, 36 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑡 = (◡𝐹 “ 𝑥)) |
| 38 | | 0nelfil 21653 |
. . . . . . . . . . . . . 14
⊢ (𝐿 ∈ (Fil‘𝑋) → ¬ ∅ ∈
𝐿) |
| 39 | 6, 38 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ¬ ∅ ∈ 𝐿) |
| 40 | 39 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → ¬ ∅ ∈ 𝐿) |
| 41 | 6 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → 𝐿 ∈ (Fil‘𝑋)) |
| 42 | 8 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿) |
| 43 | 15, 1, 7 | 3jca 1242 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑋 ∈ 𝐿 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋)) |
| 44 | 43 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → (𝑋 ∈ 𝐿 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋)) |
| 45 | | ssfg 21676 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ (𝑌filGen𝐵)) |
| 46 | 1, 45 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐵 ⊆ (𝑌filGen𝐵)) |
| 47 | 46 | sselda 3603 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → 𝑠 ∈ (𝑌filGen𝐵)) |
| 48 | 19 | imaelfm 21755 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑋 ∈ 𝐿 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑠 ∈ (𝑌filGen𝐵)) → (𝐹 “ 𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐵)) |
| 49 | 44, 47, 48 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → (𝐹 “ 𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐵)) |
| 50 | 42, 49 | sseldd 3604 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → (𝐹 “ 𝑠) ∈ 𝐿) |
| 51 | 41, 50 | jca 554 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → (𝐿 ∈ (Fil‘𝑋) ∧ (𝐹 “ 𝑠) ∈ 𝐿)) |
| 52 | | filin 21658 |
. . . . . . . . . . . . . . 15
⊢ ((𝐿 ∈ (Fil‘𝑋) ∧ (𝐹 “ 𝑠) ∈ 𝐿 ∧ 𝑥 ∈ 𝐿) → ((𝐹 “ 𝑠) ∩ 𝑥) ∈ 𝐿) |
| 53 | 52 | 3expa 1265 |
. . . . . . . . . . . . . 14
⊢ (((𝐿 ∈ (Fil‘𝑋) ∧ (𝐹 “ 𝑠) ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) → ((𝐹 “ 𝑠) ∩ 𝑥) ∈ 𝐿) |
| 54 | 51, 53 | sylan 488 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → ((𝐹 “ 𝑠) ∩ 𝑥) ∈ 𝐿) |
| 55 | | eleq1 2689 |
. . . . . . . . . . . . 13
⊢ (((𝐹 “ 𝑠) ∩ 𝑥) = ∅ → (((𝐹 “ 𝑠) ∩ 𝑥) ∈ 𝐿 ↔ ∅ ∈ 𝐿)) |
| 56 | 54, 55 | syl5ibcom 235 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → (((𝐹 “ 𝑠) ∩ 𝑥) = ∅ → ∅ ∈ 𝐿)) |
| 57 | 40, 56 | mtod 189 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → ¬ ((𝐹 “ 𝑠) ∩ 𝑥) = ∅) |
| 58 | | neq0 3930 |
. . . . . . . . . . . 12
⊢ (¬
((𝐹 “ 𝑠) ∩ 𝑥) = ∅ ↔ ∃𝑡 𝑡 ∈ ((𝐹 “ 𝑠) ∩ 𝑥)) |
| 59 | | elin 3796 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ ((𝐹 “ 𝑠) ∩ 𝑥) ↔ (𝑡 ∈ (𝐹 “ 𝑠) ∧ 𝑡 ∈ 𝑥)) |
| 60 | | ffun 6048 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹:𝑌⟶𝑋 → Fun 𝐹) |
| 61 | | fvelima 6248 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Fun
𝐹 ∧ 𝑡 ∈ (𝐹 “ 𝑠)) → ∃𝑦 ∈ 𝑠 (𝐹‘𝑦) = 𝑡) |
| 62 | 61 | ex 450 |
. . . . . . . . . . . . . . . . . 18
⊢ (Fun
𝐹 → (𝑡 ∈ (𝐹 “ 𝑠) → ∃𝑦 ∈ 𝑠 (𝐹‘𝑦) = 𝑡)) |
| 63 | 7, 60, 62 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑡 ∈ (𝐹 “ 𝑠) → ∃𝑦 ∈ 𝑠 (𝐹‘𝑦) = 𝑡)) |
| 64 | 63 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → (𝑡 ∈ (𝐹 “ 𝑠) → ∃𝑦 ∈ 𝑠 (𝐹‘𝑦) = 𝑡)) |
| 65 | 7, 60 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → Fun 𝐹) |
| 66 | 65 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) ∧ 𝑦 ∈ 𝑠) → Fun 𝐹) |
| 67 | | fbelss 21637 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑠 ∈ 𝐵) → 𝑠 ⊆ 𝑌) |
| 68 | 1, 67 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → 𝑠 ⊆ 𝑌) |
| 69 | | fdm 6051 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐹:𝑌⟶𝑋 → dom 𝐹 = 𝑌) |
| 70 | 7, 69 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → dom 𝐹 = 𝑌) |
| 71 | 70 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → dom 𝐹 = 𝑌) |
| 72 | 68, 71 | sseqtr4d 3642 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → 𝑠 ⊆ dom 𝐹) |
| 73 | 72 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → 𝑠 ⊆ dom 𝐹) |
| 74 | 73 | sselda 3603 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) ∧ 𝑦 ∈ 𝑠) → 𝑦 ∈ dom 𝐹) |
| 75 | | fvimacnv 6332 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) → ((𝐹‘𝑦) ∈ 𝑥 ↔ 𝑦 ∈ (◡𝐹 “ 𝑥))) |
| 76 | 66, 74, 75 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) ∧ 𝑦 ∈ 𝑠) → ((𝐹‘𝑦) ∈ 𝑥 ↔ 𝑦 ∈ (◡𝐹 “ 𝑥))) |
| 77 | | inelcm 4032 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ 𝑠 ∧ 𝑦 ∈ (◡𝐹 “ 𝑥)) → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅) |
| 78 | 77 | ex 450 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ 𝑠 → (𝑦 ∈ (◡𝐹 “ 𝑥) → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅)) |
| 79 | 78 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) ∧ 𝑦 ∈ 𝑠) → (𝑦 ∈ (◡𝐹 “ 𝑥) → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅)) |
| 80 | 76, 79 | sylbid 230 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) ∧ 𝑦 ∈ 𝑠) → ((𝐹‘𝑦) ∈ 𝑥 → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅)) |
| 81 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘𝑦) = 𝑡 → ((𝐹‘𝑦) ∈ 𝑥 ↔ 𝑡 ∈ 𝑥)) |
| 82 | 81 | imbi1d 331 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑦) = 𝑡 → (((𝐹‘𝑦) ∈ 𝑥 → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅) ↔ (𝑡 ∈ 𝑥 → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅))) |
| 83 | 80, 82 | syl5ibcom 235 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) ∧ 𝑦 ∈ 𝑠) → ((𝐹‘𝑦) = 𝑡 → (𝑡 ∈ 𝑥 → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅))) |
| 84 | 83 | rexlimdva 3031 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → (∃𝑦 ∈ 𝑠 (𝐹‘𝑦) = 𝑡 → (𝑡 ∈ 𝑥 → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅))) |
| 85 | 64, 84 | syld 47 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → (𝑡 ∈ (𝐹 “ 𝑠) → (𝑡 ∈ 𝑥 → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅))) |
| 86 | 85 | impd 447 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → ((𝑡 ∈ (𝐹 “ 𝑠) ∧ 𝑡 ∈ 𝑥) → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅)) |
| 87 | 59, 86 | syl5bi 232 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → (𝑡 ∈ ((𝐹 “ 𝑠) ∩ 𝑥) → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅)) |
| 88 | 87 | exlimdv 1861 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → (∃𝑡 𝑡 ∈ ((𝐹 “ 𝑠) ∩ 𝑥) → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅)) |
| 89 | 58, 88 | syl5bi 232 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → (¬ ((𝐹 “ 𝑠) ∩ 𝑥) = ∅ → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅)) |
| 90 | 57, 89 | mpd 15 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅) |
| 91 | | ineq2 3808 |
. . . . . . . . . . 11
⊢ (𝑡 = (◡𝐹 “ 𝑥) → (𝑠 ∩ 𝑡) = (𝑠 ∩ (◡𝐹 “ 𝑥))) |
| 92 | 91 | neeq1d 2853 |
. . . . . . . . . 10
⊢ (𝑡 = (◡𝐹 “ 𝑥) → ((𝑠 ∩ 𝑡) ≠ ∅ ↔ (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅)) |
| 93 | 90, 92 | syl5ibrcom 237 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → (𝑡 = (◡𝐹 “ 𝑥) → (𝑠 ∩ 𝑡) ≠ ∅)) |
| 94 | 93 | rexlimdva 3031 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → (∃𝑥 ∈ 𝐿 𝑡 = (◡𝐹 “ 𝑥) → (𝑠 ∩ 𝑡) ≠ ∅)) |
| 95 | 37, 94 | syl5bi 232 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → (𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) → (𝑠 ∩ 𝑡) ≠ ∅)) |
| 96 | 95 | expimpd 629 |
. . . . . 6
⊢ (𝜑 → ((𝑠 ∈ 𝐵 ∧ 𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) → (𝑠 ∩ 𝑡) ≠ ∅)) |
| 97 | 96 | ralrimivv 2970 |
. . . . 5
⊢ (𝜑 → ∀𝑠 ∈ 𝐵 ∀𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝑠 ∩ 𝑡) ≠ ∅) |
| 98 | | fbunfip 21673 |
. . . . . 6
⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ (fBas‘𝑌)) → (¬ ∅ ∈
(fi‘(𝐵 ∪ ran
(𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) ↔ ∀𝑠 ∈ 𝐵 ∀𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝑠 ∩ 𝑡) ≠ ∅)) |
| 99 | 1, 25, 98 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → (¬ ∅ ∈
(fi‘(𝐵 ∪ ran
(𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) ↔ ∀𝑠 ∈ 𝐵 ∀𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝑠 ∩ 𝑡) ≠ ∅)) |
| 100 | 97, 99 | mpbird 247 |
. . . 4
⊢ (𝜑 → ¬ ∅ ∈
(fi‘(𝐵 ∪ ran
(𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) |
| 101 | | fsubbas 21671 |
. . . . 5
⊢ (𝑌 ∈ dom fBas →
((fi‘(𝐵 ∪ ran
(𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) ∈ (fBas‘𝑌) ↔ ((𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ⊆ 𝒫 𝑌 ∧ (𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ≠ ∅ ∧ ¬ ∅ ∈
(fi‘(𝐵 ∪ ran
(𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))))) |
| 102 | 1, 4, 101 | 3syl 18 |
. . . 4
⊢ (𝜑 → ((fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) ∈ (fBas‘𝑌) ↔ ((𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ⊆ 𝒫 𝑌 ∧ (𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ≠ ∅ ∧ ¬ ∅ ∈
(fi‘(𝐵 ∪ ran
(𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))))) |
| 103 | 28, 33, 100, 102 | mpbir3and 1245 |
. . 3
⊢ (𝜑 → (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) ∈ (fBas‘𝑌)) |
| 104 | | fgcl 21682 |
. . 3
⊢
((fi‘(𝐵 ∪
ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) ∈ (fBas‘𝑌) → (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) ∈ (Fil‘𝑌)) |
| 105 | 103, 104 | syl 17 |
. 2
⊢ (𝜑 → (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) ∈ (Fil‘𝑌)) |
| 106 | | unexg 6959 |
. . . . . 6
⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ (fBas‘𝑌)) → (𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ∈ V) |
| 107 | 1, 25, 106 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → (𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ∈ V) |
| 108 | | ssfii 8325 |
. . . . 5
⊢ ((𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ∈ V → (𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ⊆ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) |
| 109 | 107, 108 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ⊆ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) |
| 110 | 109 | unssad 3790 |
. . 3
⊢ (𝜑 → 𝐵 ⊆ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) |
| 111 | | ssfg 21676 |
. . . 4
⊢
((fi‘(𝐵 ∪
ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) ∈ (fBas‘𝑌) → (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))))) |
| 112 | 103, 111 | syl 17 |
. . 3
⊢ (𝜑 → (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))))) |
| 113 | 110, 112 | sstrd 3613 |
. 2
⊢ (𝜑 → 𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))))) |
| 114 | 1, 6, 7, 8 | fmfnfmlem4 21761 |
. . . . 5
⊢ (𝜑 → (𝑡 ∈ 𝐿 ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))(𝐹 “ 𝑠) ⊆ 𝑡))) |
| 115 | | elfm 21751 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐿 ∧ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))(𝐹 “ 𝑠) ⊆ 𝑡))) |
| 116 | 15, 103, 7, 115 | syl3anc 1326 |
. . . . 5
⊢ (𝜑 → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))(𝐹 “ 𝑠) ⊆ 𝑡))) |
| 117 | 114, 116 | bitr4d 271 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ 𝐿 ↔ 𝑡 ∈ ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))))) |
| 118 | 117 | eqrdv 2620 |
. . 3
⊢ (𝜑 → 𝐿 = ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))))) |
| 119 | | eqid 2622 |
. . . . 5
⊢ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) |
| 120 | 119 | fmfg 21753 |
. . . 4
⊢ ((𝑋 ∈ 𝐿 ∧ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))))) |
| 121 | 15, 103, 7, 120 | syl3anc 1326 |
. . 3
⊢ (𝜑 → ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))))) |
| 122 | 118, 121 | eqtrd 2656 |
. 2
⊢ (𝜑 → 𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))))) |
| 123 | | sseq2 3627 |
. . . 4
⊢ (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) → (𝐵 ⊆ 𝑓 ↔ 𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))))) |
| 124 | | fveq2 6191 |
. . . . 5
⊢ (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) → ((𝑋 FilMap 𝐹)‘𝑓) = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))))) |
| 125 | 124 | eqeq2d 2632 |
. . . 4
⊢ (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) → (𝐿 = ((𝑋 FilMap 𝐹)‘𝑓) ↔ 𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))))))) |
| 126 | 123, 125 | anbi12d 747 |
. . 3
⊢ (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) → ((𝐵 ⊆ 𝑓 ∧ 𝐿 = ((𝑋 FilMap 𝐹)‘𝑓)) ↔ (𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) ∧ 𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))))))) |
| 127 | 126 | rspcev 3309 |
. 2
⊢ (((𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) ∈ (Fil‘𝑌) ∧ (𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) ∧ 𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))))))) → ∃𝑓 ∈ (Fil‘𝑌)(𝐵 ⊆ 𝑓 ∧ 𝐿 = ((𝑋 FilMap 𝐹)‘𝑓))) |
| 128 | 105, 113,
122, 127 | syl12anc 1324 |
1
⊢ (𝜑 → ∃𝑓 ∈ (Fil‘𝑌)(𝐵 ⊆ 𝑓 ∧ 𝐿 = ((𝑋 FilMap 𝐹)‘𝑓))) |