| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sgncl | Structured version Visualization version GIF version | ||
| Description: Closure of the signum. (Contributed by Thierry Arnoux, 28-Sep-2018.) |
| Ref | Expression |
|---|---|
| sgncl | ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) ∈ {-1, 0, 1}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 477 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → 𝐴 = 0) | |
| 2 | 1 | fveq2d 6195 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → (sgn‘𝐴) = (sgn‘0)) |
| 3 | sgn0 13829 | . . . 4 ⊢ (sgn‘0) = 0 | |
| 4 | 2, 3 | syl6eq 2672 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → (sgn‘𝐴) = 0) |
| 5 | c0ex 10034 | . . . 4 ⊢ 0 ∈ V | |
| 6 | 5 | tpid2 4304 | . . 3 ⊢ 0 ∈ {-1, 0, 1} |
| 7 | 4, 6 | syl6eqel 2709 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
| 8 | sgnn 13834 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (sgn‘𝐴) = -1) | |
| 9 | negex 10279 | . . . . . 6 ⊢ -1 ∈ V | |
| 10 | 9 | tpid1 4303 | . . . . 5 ⊢ -1 ∈ {-1, 0, 1} |
| 11 | 8, 10 | syl6eqel 2709 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
| 12 | 11 | adantlr 751 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0) ∧ 𝐴 < 0) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
| 13 | sgnp 13830 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1) | |
| 14 | 1ex 10035 | . . . . . 6 ⊢ 1 ∈ V | |
| 15 | 14 | tpid3 4307 | . . . . 5 ⊢ 1 ∈ {-1, 0, 1} |
| 16 | 13, 15 | syl6eqel 2709 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
| 17 | 16 | adantlr 751 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0) ∧ 0 < 𝐴) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
| 18 | 0xr 10086 | . . . 4 ⊢ 0 ∈ ℝ* | |
| 19 | xrlttri2 11975 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝐴 ≠ 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴))) | |
| 20 | 19 | biimpa 501 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ 𝐴 ≠ 0) → (𝐴 < 0 ∨ 0 < 𝐴)) |
| 21 | 18, 20 | mpanl2 717 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0) → (𝐴 < 0 ∨ 0 < 𝐴)) |
| 22 | 12, 17, 21 | mpjaodan 827 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
| 23 | 7, 22 | pm2.61dane 2881 | 1 ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) ∈ {-1, 0, 1}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 383 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 {ctp 4181 class class class wbr 4653 ‘cfv 5888 0cc0 9936 1c1 9937 ℝ*cxr 10073 < clt 10074 -cneg 10267 sgncsgn 13826 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-i2m1 10004 ax-1ne0 10005 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-neg 10269 df-sgn 13827 |
| This theorem is referenced by: sgnclre 30601 sgnmulsgn 30611 sgnmulsgp 30612 signstcl 30642 signstf 30643 signstf0 30645 signstfvn 30646 signsvtn0 30647 signstfvneq0 30649 signsvfn 30659 |
| Copyright terms: Public domain | W3C validator |