Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstf0 Structured version   Visualization version   GIF version

Theorem signstf0 30645
Description: Sign of a single letter word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(#‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(#‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstf0 (𝐾 ∈ ℝ → (𝑇‘⟨“𝐾”⟩) = ⟨“(sgn‘𝐾)”⟩)
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝑊   𝑓,𝐾,𝑖,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐾(𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstf0
StepHypRef Expression
1 s1len 13385 . . . . . 6 (#‘⟨“𝐾”⟩) = 1
21oveq2i 6661 . . . . 5 (0..^(#‘⟨“𝐾”⟩)) = (0..^1)
3 fzo01 12550 . . . . 5 (0..^1) = {0}
42, 3eqtri 2644 . . . 4 (0..^(#‘⟨“𝐾”⟩)) = {0}
54a1i 11 . . 3 (𝐾 ∈ ℝ → (0..^(#‘⟨“𝐾”⟩)) = {0})
6 simpr 477 . . . . . 6 ((𝐾 ∈ ℝ ∧ 𝑛 ∈ (0..^(#‘⟨“𝐾”⟩))) → 𝑛 ∈ (0..^(#‘⟨“𝐾”⟩)))
76, 4syl6eleq 2711 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝑛 ∈ (0..^(#‘⟨“𝐾”⟩))) → 𝑛 ∈ {0})
8 velsn 4193 . . . . 5 (𝑛 ∈ {0} ↔ 𝑛 = 0)
97, 8sylib 208 . . . 4 ((𝐾 ∈ ℝ ∧ 𝑛 ∈ (0..^(#‘⟨“𝐾”⟩))) → 𝑛 = 0)
10 oveq2 6658 . . . . . . . . 9 (𝑛 = 0 → (0...𝑛) = (0...0))
11 0z 11388 . . . . . . . . . 10 0 ∈ ℤ
12 fzsn 12383 . . . . . . . . . 10 (0 ∈ ℤ → (0...0) = {0})
1311, 12ax-mp 5 . . . . . . . . 9 (0...0) = {0}
1410, 13syl6eq 2672 . . . . . . . 8 (𝑛 = 0 → (0...𝑛) = {0})
1514mpteq1d 4738 . . . . . . 7 (𝑛 = 0 → (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖))) = (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖))))
1615oveq2d 6666 . . . . . 6 (𝑛 = 0 → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (𝑊 Σg (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))))
1716adantl 482 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝑛 = 0) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (𝑊 Σg (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))))
18 signsv.p . . . . . . . . 9 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
19 signsv.w . . . . . . . . 9 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
2018, 19signswmnd 30634 . . . . . . . 8 𝑊 ∈ Mnd
2120a1i 11 . . . . . . 7 (𝐾 ∈ ℝ → 𝑊 ∈ Mnd)
22 0re 10040 . . . . . . . 8 0 ∈ ℝ
2322a1i 11 . . . . . . 7 (𝐾 ∈ ℝ → 0 ∈ ℝ)
24 s1fv 13390 . . . . . . . . . 10 (𝐾 ∈ ℝ → (⟨“𝐾”⟩‘0) = 𝐾)
25 id 22 . . . . . . . . . 10 (𝐾 ∈ ℝ → 𝐾 ∈ ℝ)
2624, 25eqeltrd 2701 . . . . . . . . 9 (𝐾 ∈ ℝ → (⟨“𝐾”⟩‘0) ∈ ℝ)
2726rexrd 10089 . . . . . . . 8 (𝐾 ∈ ℝ → (⟨“𝐾”⟩‘0) ∈ ℝ*)
28 sgncl 30600 . . . . . . . 8 ((⟨“𝐾”⟩‘0) ∈ ℝ* → (sgn‘(⟨“𝐾”⟩‘0)) ∈ {-1, 0, 1})
2927, 28syl 17 . . . . . . 7 (𝐾 ∈ ℝ → (sgn‘(⟨“𝐾”⟩‘0)) ∈ {-1, 0, 1})
3018, 19signswbase 30631 . . . . . . . 8 {-1, 0, 1} = (Base‘𝑊)
31 fveq2 6191 . . . . . . . . 9 (𝑖 = 0 → (⟨“𝐾”⟩‘𝑖) = (⟨“𝐾”⟩‘0))
3231fveq2d 6195 . . . . . . . 8 (𝑖 = 0 → (sgn‘(⟨“𝐾”⟩‘𝑖)) = (sgn‘(⟨“𝐾”⟩‘0)))
3330, 32gsumsn 18354 . . . . . . 7 ((𝑊 ∈ Mnd ∧ 0 ∈ ℝ ∧ (sgn‘(⟨“𝐾”⟩‘0)) ∈ {-1, 0, 1}) → (𝑊 Σg (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (sgn‘(⟨“𝐾”⟩‘0)))
3421, 23, 29, 33syl3anc 1326 . . . . . 6 (𝐾 ∈ ℝ → (𝑊 Σg (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (sgn‘(⟨“𝐾”⟩‘0)))
3534adantr 481 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝑛 = 0) → (𝑊 Σg (𝑖 ∈ {0} ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (sgn‘(⟨“𝐾”⟩‘0)))
3624fveq2d 6195 . . . . . 6 (𝐾 ∈ ℝ → (sgn‘(⟨“𝐾”⟩‘0)) = (sgn‘𝐾))
3736adantr 481 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝑛 = 0) → (sgn‘(⟨“𝐾”⟩‘0)) = (sgn‘𝐾))
3817, 35, 373eqtrd 2660 . . . 4 ((𝐾 ∈ ℝ ∧ 𝑛 = 0) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (sgn‘𝐾))
399, 38syldan 487 . . 3 ((𝐾 ∈ ℝ ∧ 𝑛 ∈ (0..^(#‘⟨“𝐾”⟩))) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖)))) = (sgn‘𝐾))
405, 39mpteq12dva 4732 . 2 (𝐾 ∈ ℝ → (𝑛 ∈ (0..^(#‘⟨“𝐾”⟩)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖))))) = (𝑛 ∈ {0} ↦ (sgn‘𝐾)))
41 s1cl 13382 . . 3 (𝐾 ∈ ℝ → ⟨“𝐾”⟩ ∈ Word ℝ)
42 signsv.t . . . 4 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(#‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
43 signsv.v . . . 4 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(#‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
4418, 19, 42, 43signstfv 30640 . . 3 (⟨“𝐾”⟩ ∈ Word ℝ → (𝑇‘⟨“𝐾”⟩) = (𝑛 ∈ (0..^(#‘⟨“𝐾”⟩)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖))))))
4541, 44syl 17 . 2 (𝐾 ∈ ℝ → (𝑇‘⟨“𝐾”⟩) = (𝑛 ∈ (0..^(#‘⟨“𝐾”⟩)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(⟨“𝐾”⟩‘𝑖))))))
46 sgnclre 30601 . . . 4 (𝐾 ∈ ℝ → (sgn‘𝐾) ∈ ℝ)
47 s1val 13378 . . . 4 ((sgn‘𝐾) ∈ ℝ → ⟨“(sgn‘𝐾)”⟩ = {⟨0, (sgn‘𝐾)⟩})
4846, 47syl 17 . . 3 (𝐾 ∈ ℝ → ⟨“(sgn‘𝐾)”⟩ = {⟨0, (sgn‘𝐾)⟩})
49 fmptsn 6433 . . . 4 ((0 ∈ ℝ ∧ (sgn‘𝐾) ∈ ℝ) → {⟨0, (sgn‘𝐾)⟩} = (𝑛 ∈ {0} ↦ (sgn‘𝐾)))
5022, 46, 49sylancr 695 . . 3 (𝐾 ∈ ℝ → {⟨0, (sgn‘𝐾)⟩} = (𝑛 ∈ {0} ↦ (sgn‘𝐾)))
5148, 50eqtrd 2656 . 2 (𝐾 ∈ ℝ → ⟨“(sgn‘𝐾)”⟩ = (𝑛 ∈ {0} ↦ (sgn‘𝐾)))
5240, 45, 513eqtr4d 2666 1 (𝐾 ∈ ℝ → (𝑇‘⟨“𝐾”⟩) = ⟨“(sgn‘𝐾)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  ifcif 4086  {csn 4177  {cpr 4179  {ctp 4181  cop 4183  cmpt 4729  cfv 5888  (class class class)co 6650  cmpt2 6652  cr 9935  0cc0 9936  1c1 9937  *cxr 10073  cmin 10266  -cneg 10267  cz 11377  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291  ⟨“cs1 13294  sgncsgn 13826  Σcsu 14416  ndxcnx 15854  Basecbs 15857  +gcplusg 15941   Σg cgsu 16101  Mndcmnd 17294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-s1 13302  df-sgn 13827  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mulg 17541  df-cntz 17750
This theorem is referenced by:  signsvtn0  30647  signstfvneq0  30649
  Copyright terms: Public domain W3C validator